ObjectivesPatients with type 2 diabetes (T2DM) are suggested to have a higher risk of developing pancreatic cancer. We used two models to predict pancreatic cancer risk among patients with T2DM.MethodsThe original data used for this investigation were retrieved from the National Health Insurance Research Database of Taiwan. The prediction models included the available possible risk factors for pancreatic cancer. The data were split into training and test sets: 97.5% of the data were used as the training set and 2.5% of the data were used as the test set. Logistic regression (LR) and artificial neural network (ANN) models were implemented using Python (Version 3.7.0). The F1, precision, and recall were compared between the LR and the ANN models. The areas under the receiver operating characteristic (ROC) curves of the prediction models were also compared.ResultsThe metrics used in this study indicated that the LR model more accurately predicted pancreatic cancer than the ANN model. For the LR model, the area under the ROC curve in the prediction of pancreatic cancer was 0.727, indicating a good fit.ConclusionUsing this LR model, our results suggested that we could appropriately predict pancreatic cancer risk in patients with T2DM in Taiwan.
Background: Successful weaning from mechanical ventilation is important for patients in intensive care units (ICUs). The aim was to construct neural networks to predict successful extubation in ventilated patients in ICUs. Methods: Data from 1 December 2009 through 31 December 2011 of 3602 patients with planned extubation in Chi-Mei Medical Center’s ICUs was used to train and test an artificial neural network (ANN). The input was 37 clinical risk factors, and the output was a failed extubation prediction. Results: One hundred eighty-five patients (5.1%) had a failed extubation. Multivariate analyses revealed that failure was positively associated with therapeutic intervention scoring system (TISS) scores (odds ratio [OR]: 1.814; 95% Confidence Interval [CI]: 1.283–2.563), chronic hemodialysis (OR: 12.264; 95% CI: 8.556–17.580), rapid shallow breathing (RSI) (OR: 2.003; 95% CI: 1.378–2.910), and pre-extubation heart rate (OR: 1.705; 95% CI: 1.173–2.480), but negatively associated with pre-extubation PaO2/FiO2 (OR: 0.529; 95%: 0.370–0.750) and maximum expiratory pressure (MEP) (OR: 0.610; 95% CI: 0.413–0.899). A multilayer perceptron ANN model with 19 neurons in a hidden layer was developed. The overall performance of this model was F1: 0.867, precision: 0.939, and recall: 0.822. The area under the receiver operating characteristic curve (AUC) was 0.85, which is better than any one of the following predictors: TISS: 0.58 (95% CI: 0.54–0.62; p < 0.001); 0.58 (95% CI: 0.53–0.62; p < 0.001); and RSI: 0.54 (95% CI: 0.49–0.58; p = 0.097). Conclusions: The ANN performed well when predicting failed extubation, and it will help predict successful planned extubation.
Objective: Early reports indicate that individuals with type 2 diabetes mellitus (T2DM) may have a greater incidence of breast malignancy than patients without T2DM. The aim of this study was to investigate the effectiveness of three different models for predicting risk of breast cancer in patients with T2DM of different characteristics. Study design and methodology: From 2000 to 2012, data on 636,111 newly diagnosed female T2DM patients were available in the Taiwan’s National Health Insurance Research Database. By applying their data, a risk prediction model of breast cancer in patients with T2DM was created. We also collected data on potential predictors of breast cancer so that adjustments for their effect could be made in the analysis. Synthetic Minority Oversampling Technology (SMOTE) was utilized to increase data for small population samples. Each datum was randomly assigned based on a ratio of about 39:1 into the training and test sets. Logistic Regression (LR), Artificial Neural Network (ANN) and Random Forest (RF) models were determined using recall, accuracy, F1 score and area under the receiver operating characteristic curve (AUC). Results: The AUC of the LR (0.834), ANN (0.865), and RF (0.959) models were found. The largest AUC among the three models was seen in the RF model. Conclusions: Although the LR, ANN, and RF models all showed high accuracy predicting the risk of breast cancer in Taiwanese with T2DM, the RF model performed best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.