Motivated by the experimental huge enhancement of the superconducting transition temperature T c in FeSe superconductor under high pressure, we perform first-principles calculations of the evolutions of structural, electronic, and lattice dynamical properties of FeSe at varying hydrostatic pressures up to 8 GPa. The pressure response is anisotropic with a larger compressibility along c-axis. At ambient pressure, Fermi surface nesting between hole and electron pockets induces spin density wave (SDW) order at the vector (π , π , 0) with a collinear antiferromagnetic structure. With the increase of pressure, the Fermi surface nesting is reduced, and therefore the SDW is suppressed, which could not enhance superconductivity based on the spin-fluctuation scenario. For the phonon dispersion, the bands have blue-shift except for the modes around 100 cm −1 , indicating hardening of the vibration modes in a wide frequency range. Furthermore, the electron-phonon coupling constant and the corresponding T c by McMillan equation are calculated. However, there is no obvious enhancement of T c under pressure, which further rules out the conventional phonon-mediated superconductivity of FeSe. Maybe the local magnetic moment plays an important role for the superconductivity and enhancement of T c under pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.