Traffic classification is a critical task in network security and management. Recent research has demonstrated the effectiveness of the deep learning-based traffic classification method. However, the following limitations remain: (1) the traffic representation is simply generated from raw packet bytes, resulting in the absence of important information; (2) the model structure of directly applying deep learning algorithms does not take traffic characteristics into account; and (3) scenario-specific classifier training usually requires a labor-intensive and time-consuming process to label data. In this paper, we introduce a masked autoencoder (MAE) based traffic transformer with multi-level flow representation to tackle these problems. To model raw traffic data, we design a formatted traffic representation matrix with hierarchical flow information. After that, we develop an efficient Traffic Transformer, in which packet-level and flow-level attention mechanisms implement more efficient feature extraction with lower complexity. At last, we utilize the MAE paradigm to pre-train our classifier with a large amount of unlabeled data, and perform fine-tuning with a few labeled data for a series of traffic classification tasks. Experiment findings reveal that our method outperforms state-of-the-art methods on five real-world traffic datasets by a large margin. The code is available at https://github.com/NSSL-SJTU/YaTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.