Juvenile hormone (JH) plays crucial roles in many aspects of insect life. The Methoprene-tolerant (Met) gene product, a member of the bHLH-PAS family of transcriptional regulators, has been demonstrated to be a key component of the JH signaling pathway. However, the molecular function of Met in JH-induced signal transduction and gene regulation remains to be fully elucidated.Here we show that a transcriptional coactivator of the ecdysteroid receptor complex, FISC, acts as a functional partner of Met in mediating JH-induced gene expression. Met and FISC appear to use their PAS domains to form a dimer only in the presence of JH or JH analogs. In newly emerged adult female mosquitoes, expression of some JH responsive genes is considerably dampened when Met or FISC is depleted by RNAi. Met and FISC are found to be associated with the promoter of the early trypsin gene (AaET) when transcription of this gene is activated by JH. A juvenile hormone response element (JHRE) has been identified in the AaET upstream regulatory region and is bound in vitro by the Met-FISC complex present in the nuclear protein extracts of previtellogenic adult female mosquitoes. In addition, the Drosophila homologs of Met and FISC can also use this mosquito JHRE to activate gene transcription in response to JH in a cell transfection assay. Together, the evidence indicates that Met and FISC form a functional complex on the JHRE in the presence of JH and directly activate transcription of JH target genes.development | endocrinology | chromatin immunoprecipitation J uvenile hormones (JHs) are sesquiterpenoid molecules synthesized and secreted by the corpora allata in insects. JHs are essential for development, reproduction, diapause, caste differentiation, migratory behavior, and longevity in many insect species (1-4). The prominent role of JH is maintaining the status quo in juvenile insects and preventing an insect from precociously turning into an adult. During larval development, ecdysone (the molting hormone) causes larval-larval molts in the presence of JH in the hemolymph. After the corpora allata stop secreting JH in the final larval instar, insect tissues change their commitment, and ecdysone triggers the larval-pupal and pupaladult molts (5).JH appears to harness a variety of signal transduction pathways to exert its function. Some effects of JH are mediated via membrane receptors and the protein kinase C signaling pathway (4, 6), whereas more evidence suggests that JH acts through intracellular receptors to modulate gene expression (7-10). In some cases, JH seems to exert its functions by modulating the ecdysteroid signaling pathway (11-17).A leading candidate for the JH receptor (or a component of the receptor) is the product of the Methoprene-tolerant (Met) gene, which was originally isolated in Drosophila melanogaster (18). Met belongs to the basic helix-loop-helix (bHLH)-PerArnt-Sim (PAS) family of transcription factors that also includes the hypoxia inducible factor 1α (HIF-1α), aryl hydrocarbon receptor (AhR), aryl hydrocarbon ...
Fragile X syndrome results from a loss of the RNA-binding protein fragile X mental retardation protein (FMRP). How FMRP regulates neuronal development and function remains unclear. Here, we show that FMRP-deficient immature neurons exhibit impaired dendritic maturation, altered expression of mitochondrial genes, fragmented mitochondria, impaired mitochondrial function, and increased oxidative stress. Enhancing mitochondrial fusion partially rescued dendritic abnormalities in FMRP-deficient immature neurons. We show that FMRP deficiency leads to reduced Htt mRNA and protein levels and that HTT mediates FMRP regulation of mitochondrial fusion and dendritic maturation. Mice with hippocampal Htt knock-down and Fmr1 knockout mice showed similar behavioral deficits that could be rescued by treatment with a mitochondrial fusion compound. Our data unveil mitochondrial dysfunction as a contributor to the impaired dendritic maturation of FMRP-deficient neurons and suggest a role for interactions between FMRP and HTT in the pathogenesis of Fragile X syndrome.
The nuclear factor of κB (NFκB) family has been well known for its significant role in regulating the expression of numerous genes that control many biological processes. However, it is unclear whether NFκB could regulate milk synthesis. In this study, we identified NFκB1 as a critical regulator for milk synthesis in bovine mammary epithelial cells (BMECs). Gene function study revealed that NFκB1 modulates the expression of mammalian target of rapamycin (mTOR), sterol response element-binding protein (SREBP)-1c, and β4Gal-T2 for milk synthesis. Furthermore, chromatin immunoprecipitation assays showed that both methionine (Met) and estrogen (E) triggered NFκB1 to bind to gene promoters of mTOR, SREBP-1c, and β4Gal-T2 in BMECs. In addition, we confirmed that Met and E triggered NFκB1 expression and phosphorylation via phosphatidylinositol-3-kinase (PI3K) but not mTOR signaling pathway. Taken together, our study reveals that NFκB1 acts as a PI3K but not mTOR-dependent critical mediator for the transcriptional activation of signaling molecules regulating milk synthesis in BMECs.
BackgroundMalaria is caused by Plasmodium parasites, which are transmitted via the bites of infected Anopheline mosquitoes. Midgut invasion is a major bottleneck for Plasmodium development inside the mosquito vectors. Malaria parasites in the midgut are surrounded by a hostile environment rich in digestive enzymes, while a rapidly responding immune system recognizes Plasmodium ookinetes and recruits killing factors from the midgut and surrounding tissues, dramatically reducing the population of invading ookinetes before they can successfully traverse the midgut epithelium. Understanding molecular details of the parasite-vector interactions requires precise measurement of nascent protein synthesis in the mosquito during Plasmodium infection. Current expression profiling primarily monitors alterations in steady-state levels of mRNA, but does not address the equally critical issue of whether the proteins encoded by the mRNAs are actually synthesized.ResultsIn this study, we used sucrose density gradient centrifugation to isolate actively translating Anopheles gambiae mRNAs based upon their association with polyribosomes (polysomes). The proportion of individual gene transcripts associated with polysomes, which is determined by RNA deep sequencing, reflects mRNA translational status. This approach led to identification of 1017 mosquito transcripts that were primarily regulated at the translational level after ingestion of Plasmodium falciparum-infected blood. Caspar, a negative regulator of the NF-kappaB transcription factor Rel2, appears to be substantially activated at the translational levels during Plasmodium infection. In addition, transcripts of Dcr1, Dcr2 and Drosha, which are involved in small RNA biosynthesis, exhibited enhanced associations with polysomes after P. falciparum challenge. This observation suggests that mosquito microRNAs may play an important role in reactions against Plasmodium invasion.ConclusionsWe analyzed both total cellular mRNAs and mRNAs that are associated with polysomes to simultaneously monitor transcriptomes and nascent protein synthesis in the mosquito. This approach provides more accurate information regarding the rate of protein synthesis, and identifies some mosquito factors that might have gone unrecognized because expression of these proteins is regulated mainly at the translational level rather than at the transcriptional level after mosquitoes ingest a Plasmodium-infected blood meal.
Human patient-derived induced pluripotent stem cells (hiPSCs) provide unique opportunities for disease modeling and drug development. However, adapting hiPSCs or their differentiated progenies to high throughput assays for phenotyping or drug screening has been challenging. Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and a major genetic cause of autism. FXS is caused by mutational trinucleotide expansion in the FMR1 gene leading to hypermethylation and gene silencing. One potential therapeutic strategy is to reactivate the silenced FMR1 gene, which has been attempted using both candidate chemicals and cell-based screening. However, molecules that effectively reactivate the silenced FMR1 gene are yet to be identified; therefore, a high throughput unbiased screen is needed. Here we demonstrate the creation of a robust FMR1-Nluc reporter hiPSC line by knocking in a Nano luciferase (Nluc) gene into the endogenous human FMR1 gene using the CRISPR/Cas9 genome editing method. We confirmed that luciferase activities faithfully report FMR1 gene expression levels and showed that neural progenitor cells derived from this line could be optimized for high throughput screening. The FMR1-Nluc reporter line is a good resource for drug screening as well as for testing potential genetic reactivation strategies. In addition, our data provide valuable information for the generation of knock-in human iPSC reporter lines for disease modeling, drug screening, and mechanistic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.