Although Fenton-like reactions have been extensively used to treat various organic contaminants in wastewaters (oily wastewaters, landfill leachate, denitrification with Fenton oxidized non-degradable large molecular organic pollutants, and removal of phosphorus, etc.), the difficulty in catalyst recovery and the instability of catalytic activity limit their practical application. Herein, iron atoms were inserted in a metal-organic framework (FeNC) with dual reaction sites as highly reactive and stable electro-Fenton-like catalysts for the catalytic oxidation of organic pollutants via the electro-Fenton-like activation reaction of peroxymonosulfate (PMS) with fractional leaching of metal ions. Experiments and density functional theory (DFT) calculations indicate that FeNC with FeN4 and Fe–Fe active sites can rapidly deliver electrons for PMS dissociation. Further, an electrolysis reactor was constructed for the on-site generation of reactive oxygen species, which can stably and continuously purify various organic wastewaters. The combined use of an electrolysis reactor and magnetic catalyst in the current study provides a direction for the long-term remediation of organic pollutants on an industrial scale.
Advanced oxidation processes (AOPs) as an efficient oxidation technology, have been extensively applied for degrading recalcitrant organic contaminants via the generated reactive oxygen species from the activation reaction of catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.