SUMMARY
Pancreatic cancer is an aggressive malignancy with 5-year mortality of 97–98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations1–5, but genomic rearrangements have not been characterised in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours6,7, including phylogenetic relationships among metastases, the scale of on-going parallel evolution in metastatic and primary sites7, and how the tumour disseminates. Here, we harness advances in DNA sequencing8–12 to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-S phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than later stages of disease. Genomic instability frequently persists after cancer dissemination, resulting in on-going, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells; seeding metastasis may require driver mutations beyond those required for primary tumours; and phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, hewn by the tandem forces of genomic instability and evolutionary selection.
SummaryThe genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ~3500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (KDM6A)1, JARID1C (KDM5C) and SETD22. These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control3. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodeling complex gene PBRM14 as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.
The progressive myoclonus epilepsies (PMEs) are a group of predominantly recessive disorders that present with action myoclonus, tonic-clonic seizures, and progressive neurological decline. Many PMEs have similar clinical presentations yet are genetically heterogeneous, making accurate diagnosis difficult. A locus for PME was mapped in a consanguineous family with a single affected individual to chromosome 17q21. An identical-by-descent, homozygous mutation in GOSR2 (c.430G>T, p.Gly144Trp), a Golgi vesicle transport gene, was identified in this patient and in four apparently unrelated individuals. A comparison of the phenotypes in these patients defined a clinically distinct PME syndrome characterized by early-onset ataxia, action myoclonus by age 6, scoliosis, and mildly elevated serum creatine kinase. This p.Gly144Trp mutation is equivalent to a loss of function and results in failure of GOSR2 protein to localize to the cis-Golgi.
The RIG-I-like receptors (RLRs) are critical for protection against RNA virus infection, and their activities must be stringently controlled to maintain immune homeostasis. Here, we report that leucine-rich repeat containing protein 25 (LRRC25) is a key negative regulator of RLR-mediated type I interferon (IFN) signaling. Upon RNA virus infection, LRRC25 specifically binds to ISG15-associated RIG-I to promote interaction between RIG-I and the autophagic cargo receptor p62 and to mediate RIG-I degradation via selective autophagy. Depletion of either LRRC25 or ISG15 abrogates RIG-I-p62 interaction as well as the autophagic degradation of RIG-I. Collectively, our findings identify a previously unrecognized role of LRRC25 in type I IFN signaling activation by which LRRC25 acts as a secondary receptor to assist RIG-I delivery to autophagosomes for degradation in a p62-dependent manner.
Introduction Cancer therapies directed at specific molecular targets in signaling pathways of cancer cells, such as tamoxifen, aromatase inhibitors and trastuzumab, have proven useful for treatment of advanced breast cancers. However, increased risk of endometrial cancer with long-term tamoxifen administration and of bone fracture due to osteoporosis in postmenopausal women undergoing aromatase inhibitor therapy are recognized side effects. These side effects as well as drug resistance make it necessary to search for novel molecular targets for drugs on the basis of well-characterized mechanisms of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.