Although many algorithms perform very well on certain datasets, existing stereo matching algorithms still fail to obtain ideal disparity images with high precision in practical robotic applications with weak or untextured objects. This greatly limits the application of binocular vision for robotic arm guidance. Traditional stereo matching algorithms suffer from disparity loss, dilation and other problems, and deep learning algorithms have weakly generalization ability, making high‐accuracy results impossible with non‐training images. We propose an algorithm that uses segments and edges as matching units. We find the mapping relationship between two‐dimensional images and three‐dimensional scenes using segments. The algorithm obtains highly accurate results in industrial robotic applications with mainly planar facets. We combine it with a deep learning algorithm to obtain very good high‐accuracy results in both general scenes and applications of industrial robots. The algorithm effectively improves the non‐linear optimization ability of traditional algorithms and generalization ability of deep learning, and provides an effective method for the binocular vision guidance of industrial robotic scenes. We used the algorithm to guide the robot arm for threading with a success rate of 70%.
Stereo matching algorithms have been developed for many years but basically focus only on the implementation of existing datasets and are rarely applied to real scenarios, such as industrial robot scenarios. Traditional stereo matching algorithms have a high error rate, and deep learning algorithms are difficult to obtain good results in real scenarios because of their weak generalisation ability and difficult access to training data. In order to use stereo matching algorithms for industrial robot guidance, it is better to design a new traditional algorithm with low time complexity for the characteristics of industrial robot scenarios dominated by planar facets. This paper proposes a new matching method based on subrows of pixels, instead of individual pixels, in order to improve robustness of matching and reduce running time. First, the pixel strings from the same row of the left and right images are divided into several colour-identical or colour-gradient segments. Then, the colour and length of the two left and right pixel segment are used as clues to determine a matching relation and obtain the matching type. Then, all match types can be determined according to non-crossing mapping. Each match type can reason backward to the corresponding spatial state of the stimulus source so that the disparity of pixels in pixel segments representing the spatial state can be calculated. This new matching method makes full use of the stimulus homology constraints and projective geometric constraints of row-aligned images. The method can obtain good results in industrial robot scenarios and be applied for industrial robot guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.