The relative pose between the projector and screen in a phase-measuring deflectometry (PMD) setup can result in perspective distortion and intensity errors in the projected fringe patterns. These problems degrade the sinusoidal characteristics of the fringe patterns, thus increasing phase, slope, and height errors in the PMD measurement. To overcome these issues, inverse perspective distortion and intensity modification algorithms were developed and applied to computer-generated fringe patterns before projection. The inverse perspective distortion matrices were obtained using a single image of the projected grid distortion target. The pixel intensities in the generated fringe patterns were modified using the relationship between the generated and captured pixel intensity values in grayscale images of uniform intensity. Experiments were conducted to measure the surface topographies of spherical concave and convex mirrors using a monoscopic PMD setup. Based on the experimental results, the rootmean-squared (RMS) intensity and phase errors in the projected sinusoidal fringe patterns were reduced by about 90% after using the modified fringe patterns compared to the original fringe patterns. When comparing the measured and the theoretical heightmaps, the results in PMD measurement showed an 8% and a 14% reduction of the RMS height errors in concave and convex heightmaps, respectively. The effectiveness of the algorithms in improving the accuracy of projector-based PMD measurement was demonstrated successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.