A new α-amylase-encoding gene (amySL3) of glycoside hydrolase (GH) family 13 was identified in soda lake isolate Alkalibacterium sp. SL3. The deduced AmySL3 shares high identities (82-98%) with putative α-amylases from the genus Alkalibacterium, but has low identities (<53%) with functionally characterized counterparts. amySL3 was successfully expressed in Escherichia coli, and the recombinant enzyme (rAmySL3) was purified to electrophoretic homogeneity. The optimal temperature and pH of the activity of the purified rAmySL3 were determined to be 45°C and pH 7.5, respectively. rAmySL3 was found to be extremely halophilic, showing maximal enzyme activity at a nearly saturated concentration of NaCl. Its thermostability was greatly enhanced in the presence of 4 M NaCl, and it was highly stable in 5 M NaCl. Moreover, the enzyme did not require calcium ions for activity, and was strongly resistant to a range of surfactants and hydrophobic organic solvents. The major hydrolysis products of rAmySL3 from soluble starch were maltobiose and maltotriose. The high ratio of acidic amino acids and highly negative electrostatic potential surface might account for the halophilic nature of AmySL3. The extremely halophilic, calcium-independent, and surfactant-resistant properties make AmySL3 a promising candidate enzyme for both basic research and industrial applications.
Many methods have been used to detect heavy metals in herbal medicines, while few are developed to remove them. In this study, a novel genetically engineered fusion protein composed of metallothionein (MT), cellulose binding module (CBM), and superfolder GFP (sfGFP) was designed to remove heavy metals. MT, a kind of cysteine-rich protein, was used to chelate heavy metals with high specific affinity. The CBM facilitated the fusion protein MT-CBM-sfGFP binding to cellulose specifically, which made the purification and immobilization in one step. The sfGFP was used to detect the fusion protein MT-CBM-sfGFP easily during the process of expression and immobilization. The MT from Cancer pagurus (MT Cap ) and the CBM from Cellulomonas fimi (CBM Cef ) were used as an example and the fusion protein (MT Cap -CBM Cef -sfGFP) was expressed in Escherichia coli. Then, the cell lysates were mechanically mixed with cellulose to create biosorbent MT Cap -CBM Cef -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.