Al2O3 ceramics with CaO-SiO2-MgO (CMS), Yb2O3 and ZrO2 additives were fabricated by a conventional solid-state reaction method. The effects of ZrO2 dopant on phase compositions, microwave dielectric properties and dielectric breakdown strength of Al2O3 ceramics were studied. XRD demonstrated that CaAl2Si2O8 and Zr &Y compound phases co-existed with alumina. SEM exhibited that ZrO2 dopant could refine the grain of alumina ceramics and improve its relative density. With ZrO2 content increasing from 1wt% to 5wt% εr increased from 9.8 to 10.25, but Q×f decreased from 52823GHz to 35922GHz. The breakdown strength increased initially and reached the maximum value at ZrO2=3wt%. When ZrO2 content is 3wt%, the comprehensive performances were the best: Eb= 37.37kV/mm for 1mm samples and 17.26kV/mm for 3mm samples, Q×f = 37044 GHz, εr = 10.01, and τf = -52 ppm/°C.
Yttrium aluminum garnet Y3Al5O12 (YAG) nanopowders were synthesized from co-crystallized precursors of Y2(SO4)3, Al(NO3)3-Al2(SO4)3 and Y(NO3)3 with a three-layer core-shell structure. X-ray diffraction (XRD) pattern indicated that too much was detrimental to the synthesis of pure phase YAG because of the serious separation between Y2(SO4)3 and Al(NO3)3-Al2(SO4)3. Transmission electron microscopy (TEM) revealed that was beneficial for the dispersion of the powders owing to the high decomposition temperature of . The powders with the n()/n(Y3+) mole ratio of 1.5/3 calcined at 1050°C showed good sintering activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.