Partially defective fingerprint image (PDFI) with poor performance poses challenges to the automated fingerprint identification system (AFIS). To improve the quality and the performance rate of PDFI, it is essential to use accurate segmentation. Currently, most fingerprint image segmentations use methods with ridge orientation, ridge frequency, coherence, variance, local gradient, etc. This paper proposes a method of XFinger-Net for segmenting PDFIs. Based on U-Net, XFinger-Net inherits its characteristics. The attention gate with fewer parameters is used to replace the cascaded network, which can suppress uncorrelated regions of PDFIs. Moreover, the XFinger-Net implements a pixel-level segmentation and takes non-blocking fingerprint images as an input to preserve the global characteristics of PDFIs. The XFinger-Net can achieve a very good segmentation effect as demonstrated in the self-made fingerprint segmentation test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.