Soliton fibre lasers mode-locked at a high harmonic of their round-trip frequency have many potential applications, from telecommunications to data storage(1). Control of multiple pulses in passively mode-locked fibre lasers has, however, proved very difficult to achieve. This has recently changed with the advent of fibre lasers mode-locked by intense optomechanical interactions in a short length of photonic crystal fibre(2,3). Optomechanical coupling between cavity modes gives rise to highly stable, optomechanically bound, laser soliton states. The repetition rate of these states corresponds to the mechanical resonant frequency in the photonic crystal fibre core(4), which can be a few gigahertz. Here we show that this system can be successfully used for programmable generation and storage of gigahertz-rate soliton sequences over many hours
Harmonic mode‐locking (HML) is an important technique enabling the generation of high‐repetition‐rate ultrashort pulses. Using an emerging time‐stretch dispersive Fourier transform technique, the experimental observation of the entire buildup process of the passive HML state in an ultrafast fiber laser is reported here. It is unveiled that the whole process of HML buildup successively undergoes seven different ultrafast phases: raised relaxation oscillation, spectral beating behavior, birth of a giant pulse, self‐phase‐modulation‐induced instability, pulse splitting, repulsion and separation of multiple pulses, and a stable HML state. It is observed that the multiple HML pulses originate from a single‐pulse splitting phenomenon and a remarkable breathing behavior occurs at an early stage of the HML buildup process. The numerical results confirm that the effects of dispersive wave, gain depletion and recovery, and acoustic wave play key roles in the earlier, middle, and later stages of this HML buildup process, respectively; as well, the acoustic resonance in the single‐mode fiber stabilizes the final HML state of lasers.
Self-assembly of fundamental elements through weak, long-range interactions plays a central role in both supramolecular DNA assembly and bottom-up synthesis of nanostructures. Optical solitons, analogous in many ways to particles, arise from the balance between nonlinearity and dispersion and have been studied in numerous optical systems. Although both short- and long-range interactions between optical solitons have attracted extensive interest for decades, stable soliton supramolecules, with multiple aspects of complexity and flexibility, have thus far escaped experimental observation due to the absence of techniques for enhancing and controlling the long-range inter-soliton forces. Here we report that long-range soliton interactions originating from optoacoustic effects and dispersive-wave radiations can be precisely tailored in a fibre laser cavity, enabling self-assembly of large numbers of optical solitons into highly-ordered supramolecular structures. We demonstrate several features of such optical structures, highlighting their potential applications in optical information storage and ultrafast laser-field manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.