Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that the transcription factors (TFs) CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes CsSPLs and reduction of SE efficiency. In the STTM-miR156a overexpressed callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated; csi-miR172d was down-regulated, whereas the target genes CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus to alter starch accumulation level in callus cells and regulate SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs mediated regulation of SE, and provides clues to enhancing SE capability in citrus.
Somatic embryogenesis (SE) is a key regeneration pathway in various biotechnology approaches to crop improvement, especially for economically important perennial woody crops like citrus. However, maintenance of SE capability has long been a challenge and becomes a bottleneck in biotechnology-facilitated plant improvement. In the embryogenic callus (EC) of citrus, we identified two csi-miR171c targeted SCARECROW-LIKE genes CsSCL2 and CsSCL3 (CsSCL2/3), which exert positive feedback regulation on csi-miR171c expression. Suppression of CsSCL2 expression by RNA interference (RNAi) enhanced SE in citrus callus. A thioredoxin superfamily protein CsClot was identified as an interactive protein of CsSCL2/3. Overexpression of CsClot disturbed reactive oxygen species (ROS) homeostasis in EC and enhanced SE. ChIP-Seq and RNA-Seq identified 660 genes directly suppressed by CsSCL2 that were enriched in biological processes including development related processes, auxin signaling pathway and cell wall organization. CsSCL2/3 bound to the promoters of regeneration-related genes, such as WUSCHEL-RELATED HOMEOBOX 2 (CsWOX2), CsWOX13 and Lateral Organ Boundaries Domain 40 (LBD40), and repressed their expression. Overall, CsSCL2/3 modulate ROS homeostasis through the interactive protein CsClot and directly suppress the expression of regeneration-related genes, thus regulating SE in citrus. We uncovered a regulatory pathway of miR171c-targeted CsSCL2/3 in SE, which shed light on the mechanism of SE and regeneration capability maintenance in citrus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.