In light of ignoring the effect of backlash on mesh stiffness in existing gear dynamic theory, a precise profile equation was established based on the generating processing principle. An improved potential energy method was proposed to calculate the mesh stiffness. The calculation result showed that when compared with the case of ignoring backlash, the mesh stiffness with backlash had an obvious decrease in a mesh cycle and the rate of decline had a trend of decreasing first and then increasing, so a stiffness coefficient was introduced to observe the effect of backlash. The Fourier series expansion was employed to fit the mesh stiffness rather than time-varying mesh stiffness, and the stiffness coefficient was fitted with the same method. The time-varying mesh stiffness was presented in terms of the piecewise function. The single degree of freedom model was employed, and the fourth order Runge–Kutta method was utilized to investigate the effect of backlash on the nonlinear dynamic characteristics with reference to the time history chart, phase diagram, Poincare map, and Fast Fourier Transformation (FFT) spectrogram. The numerical results revealed that the gear system primarily performs a non-harmonic-single-periodic motion. The partially enlarged views indicate that the system also exhibits small-amplitude and low-frequency motion. For different cases of backlash, the low-frequency motion sometimes shows excellent periodicity and stability and sometimes shows chaos. It is of practical guiding significance to know the mechanisms of some unusual noises as well as the design and manufacture of gear backlash.
Abstract. The 3K planetary gear system is a basic planetary transmission structure
with many advantages over the 2K-H planetary gear system. However, the
vibration characteristics will be more complicated due to the increase of
central gears meshing with each planet gear simultaneously. In this paper, a
lumped-parameter model for a 3K-II planetary gear set was developed to
simulate the dynamic response. The time-varying stiffness of each meshing
pair for different gear tooth root crack faults is calculated via the finite
element method. By considering the effect of time-varying transmission
paths, the transverse synthetic vibrations are obtained. Subsequently, the
feasibilities of transverse synthetic vibration signals and output torsional
vibration signals as reference for fault diagnosis are analyzed by studying
the time-domain and frequency-domain characteristics of these two vibration
signals. The results indicate that both the transverse synthetic vibration
signals and output torsional vibration signals can be used for fault
identification and localization of the 3K-II planetary gear train, and yet
they both have their limitations. Some results of this paper are available
as references for the fault diagnosis of 3K planetary gear trains.
The dynamic characteristics and tooth spalling fault features are studied for the high-contact-ratio spur gear bearing system. The bending torsional dynamic model is proposed in this study for the gear bearing system with an ellipsoid spalling fault. This model also considers time-varying meshing stiffness, tooth friction, fractal gear backlash, and comprehensive transmission error. The meshing stiffness of the system is evaluated using the potential energy method. The bifurcation diagram, time-domain waveform, Poincaré map, phase map, frequency spectrum, and related three-dimensional map are used as tools to analyze the system’s dynamic response qualitatively. The results reveal that the system’s motion with ellipsoid tooth spalling defect exhibits rich dynamic behavior. The response of the proposed dynamic model is consistent with experimental results in the frequency domain. Therefore, the developed dynamic model can predict the system’s vibration behavior with localized spalling fault. Hence, it could also provide a theoretical foundation for future spall defect diagnosis of the gear transmission system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.