APEX2, an engineered ascorbate peroxidase for high activity, is a powerful tool for proximity labeling applications. Owing to its lack of disulfides and the calcium‐independent activity, APEX2 can be applied intracellularly for targeted electron microscopy imaging or interactome mapping when fusing to a protein of interest. However, APEX2 fusion is often deleterious to the protein expression, which seriously hampers its wide utility. This problem is especially compelling when APEX2 is fused to structurally delicate proteins, such as multi‐pass membrane proteins. In this study, we found that a cysteine‐free single mutant C32S of APEX2 dramatically improved the expression of fusion proteins in mammalian cells without compromising the enzyme activity. We fused APEX2 and APEX2C32S to four multi‐transmembrane solute carriers (SLCs), SLC1A5, SLC6A5, SLC6A14, and SLC7A1, and compared their expressions in stable HEK293T cell lines. Except the SLC6A5 fusions expressing at decent levels for both APEX2 (70%) and APEX2C32S (73%), other three SLC proteins showed significantly better expression when fusing to APEX2C32S (69 ± 13%) than APEX2 (29 ± 15%). Immunofluorescence and western blot experiments showed correct plasma membrane localization and strong proximity labeling efficiency in all four SLC‐APEX2C32S cells. Enzyme kinetic experiments revealed that APEX2 and APEX2C32S have comparable activities in terms of oxidizing guaiacol. Overall, we believe APEX2C32S is a superior fusion tag to APEX2 for proximity labeling applications, especially when mismatched disulfide bonding or poor expression is a concern.
Cancer cells have dramatically increased demands for energy as well as biosynthetic precursors to fuel their restless growth. Enhanced glutaminolysis is a hallmark of cancer metabolism which fulfills these needs. Two glutamine transporters, SLC1A5 and SLC38A2, have been previously reported to promote glutaminolysis in cancer with controversial perspectives. In this study, we harnessed the proximity labeling reaction to map the protein interactome using mass spectrometry-based proteomics and discovered a potential protein-protein interaction between SLC1A5 and SLC38A2. The SLC1A5/SLC38A2 interaction was further confirmed by bimolecular fluorescence complementation assay. We further investigated the metabolic influence of SLC1A5 and SLC38A2 overexpression in human cells, respectively, and found that only SLC38A2, but not SLC1A5, resulted in a cancer-like metabolic profile, where the intracellular concentrations of essential amino acids and lactate were significantly increased as quantified by nuclear magnetic resonance spectroscopy. Finally, we analyzed the 5-year survival rates in a large pancancer cohort and found that the SLC1A5 hi /SLC38A2 lo group did not relate to a poor survival rate, whereas the SLC1A5 lo / SLC38A2 hi group significantly aggravated the lethality. Intriguingly, the SLC1A5 hi /SLC38A2 hi group resulted in an even worse prognosis, suggesting a cooperative effect between SLC1A5 and SCL38A2. Our data suggest that SLC38A2 plays a dominant role in reprogramming the cancer-like metabolism and promoting the cancer progression, whereas SLC1A5 may augment this effect when co-overexpressed with SLC38A2. We propose a model to explain the relationship between SLC1A5, SLC38A2 and SCL7A5, and discuss their impact on glutaminolysis and mTOR signaling.
Traditional antibody generation, using either phage display or animal immunization, relies on purified antigens. Many membrane proteins, such as G protein-coupled receptors, solute carriers, or ion channels, are important drug targets but very challenging for the formation of antibodies due to the difficulty of protein purification. Whole-cell panning is an alternative approach for generating antibodies without the need for antigen purification. However, it often suffers from background interference and therefore requires extensive screening with low success rates. Here, we develop a new phage selection method, dubbed affinity-tag-guided proximity selection (A-GPS), to efficiently isolate specific antibodies directly from the antigen-presenting cells. By engineering a genetically fused affinity tag for the target antigen, A-GPS confines the proximity labeling reaction near the target antigen and preferentially enriches the phage bound to the target antigen. Using surface-presented GFP on human cells as a model antigen, we demonstrated that A-GPS successfully enriched the antigen-specific clones in two rounds of selection. Among the 46 randomly picked clones, >95% of clones showed great affinity and specificity for GFP over the background of HEK293T surface proteins. One of the best clones expressed as a Fab fragment showed subnanomolar binding affinity for GFP. This clone was successfully applied to common biological applications, such as immunofluorescence and flow cytometry, reflecting the usefulness of A-GPS for generating commercial-grade antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.