LiCoO2, discovered as a lithium‐ion intercalation material in 1980 by Prof. John B. Goodenough, is still the dominant cathode for lithium‐ion batteries (LIBs) in the portable electronics market due to its high compacted density, high energy density, excellent cycle life and reliability. In order to satisfy the increasing energy demand of portable electronics such as smartphones and laptops, the upper cutoff voltage of LiCoO2‐based batteries has been continuously raised for achieving higher energy density. However, several detrimental issues including surface degradation, damages induced by destructive phase transitions, and inhomogeneous reactions could emerge as charging to a high voltage (>4.2 V vs Li/Li+), which leads to the rapid decay of capacity, efficiency, and cycle life. In this review, the history and recent advances of LiCoO2 are introduced, and a significant section is dedicated to the fundamental failure mechanisms of LiCoO2 at high voltages (>4.2 V vs Li/Li+). Meanwhile, the modification strategies and the development of LiCoO2‐based LIBs in industry are also discussed.
Despite the wide application of lithium‐ion batteries in portable electronic devices and electric vehicles, the demand for new battery systems with the merits of high voltage, environmental friendliness, safety, and cost efficiency is still quite urgent. This perspective focuses on dual‐ion batteries (DIBs), in which, both the cations and anions are involved in the battery reaction. An anion's intercalation/deintercalation process on the cathode side allows the DIBs to operate at high voltages, which is favorable for enhanced energy density. However, electrolytes with a wide electrochemical window and suitable anion‐intercalation materials with highly reversible capacities should be developed. The progress of research into stable organic electrolytes, ionic liquids, and their effects on the electrochemical performances of DIBs are first discussed. Thereafter, the anion‐host materials including graphitic materials, organic materials, and their working mechanisms are discussed in detail. In addition, recently emerging DIB systems with high‐capacity anodes, or sodium‐, potassium‐ion involved battery reactions are also reviewed. The authors' recent work, demonstrating a generalized DIB construction using metal foil as both current collector and alloying anode material, which is successfully extended into lithium‐, sodium‐, and potassium‐based DIBs, is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.