Background
This study aimed to evaluate the influences of SARS-CoV-2 infection on semen parameters and investigate the impact of the infection on in vitro fertilization (IVF) outcomes.
Methods
This retrospective study enrolled couples undergoing IVF cycles between May 2020 and February 2021 at Tongji Hospital, Wuhan. Baseline characteristics were matched using propensity score matching. Participants were categorized into an unexposed group (SARS-COV-2 negative) and exposed group (SARS-COV-2 positive) based on a history of SARS-CoV-2 infection, and the populations were 148 and 50 after matching, respectively. IVF data were compared between the matched cohorts. Moreover, semen parameters were compared before and after infection among the infected males. The main measures were semen parameters and IVF outcomes, including laboratory and clinical outcomes.
Results
Generally, the concentration and motility of sperm did not significantly differ before and after infection. Infected males seemed to have fewer sperm with normal morphology, while all values were above the limits. Notably, the blastocyst formation rate and available blastocyst rate in the exposed group were lower than those in the control group, despite similar mature oocytes rates, normal fertilization rates, cleavage rates, and high-quality embryo rates. Moreover, no significant differences were exhibited between the matched cohorts regarding the implantation rate, biochemical pregnancy rate, clinical pregnancy rate, or early miscarriage rate.
Conclusions
The results of this retrospective cohort study suggested that the semen quality and the chance of pregnancy in terms of IVF outcomes were comparable between the males with a history of SARS-CoV-2 infection and controls, although a decreased blastocyst formation rate and available blastocyst rate was observed in the exposed group, which needs to be reinforced by a multicenter long-term investigation with a larger sample size.
Exosomes are lipid bilayer particles that originated from almost all types of cells and play an important role in intercellular communication. Tumor-derived exosomes contain large amounts of noncoding RNA, DNA, and proteins, which can be transferred into recipient cells as functional components in exosomes. These exosomal functional constituents depend on the originating cells, and it has been proved that types and numbers of exosomal components differ in cancer patients and healthy individuals. This review summarizes the role of tumor-derived exosomes in immunomodulation and discusses the application of exosomes in immunotherapy in cancers. Overall, exosomes isolated from cancer cells are turned out to promote immune evasion and interfere with immune responses in tumors through inducing apoptosis of CD8+ T cells, facilitating generation of Tregs, suppressing natural killer (NK) cell cytotoxicity, inhibiting maturation and differentiation of monocyte, and enhancing suppressive function of myeloid-derived suppressor cells (MDSCs). Mechanistically, exosomal functional components play a significant role in the immunomodulation in cancers. Moreover, based on the existing studies, exosomes could potentially serve as therapeutic delivery vehicles, noninvasive biomarkers, and immunotherapeutic vaccines for various types of cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.