In this paper, a fs-laser phase mask inscription system based on a galvanometer scanning strategy is designed and set up for the fabrication of large-core fiber Bragg gratings (FBGs). Based on this setup, a homogeneous cross-sectional refractive index modulation can be achieved in the core of large-mode-area fiber and a pair of FBGs are fabricated in fibers with core diameter of 30 μm. To investigate the performance of the fabricated FBGs, a high power all-fiber oscillator is built using a pure backward pumping structure. The FBGs work well and the maximum output power of 7920 W is achieved with an optical-optical conversion efficiency of 77.3%. To the best of our knowledge, this is the highest power of all-fiber oscillators based on fs-written FBGs. This work provides a flexible, stable and economic scanning strategy for large-core FBG inscription and exhibit excellent performance for high power fiber lasers.
We report here the first hundred-watt continuous wave fiber gas laser in H2-filled hollow-core photonic crystal fiber (PCF) by stimulated Raman scattering. The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W. To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas, a hollow-core fiber end-cap is fabricated and used at the input end. A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2, and the conversion efficiency of the first Stokes power is around 48.9%. This work paves the way for high-power fiber gas Raman lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.