Conventional constant-on-time (COT) control for DC-DC buck converter is apt to be affected by the noise caused by parasitic effect including not properly specified and temperature dependent equivalent series resistance (ESR) and equivalent series inductance (ESL). As a result, the safety operation area (SOA) of the COT is limited by the selection of external components. In this paper, the calibrated anti-ESL (CAESL) technique and the calibrated gain and BW (CGB) technique for alleviating ESL and ESR variation, respectively, are proposed to ensure a robust COT control. Furthermore, degraded output regulation caused by enlarged ESL effect due to input battery voltage variation is also solved by the CAESL technique. The proposed COT converter fabricated in 28nm CMOS technology uses an output capacitor with an ESR smaller than 1mΩ, output ripple of 20mV, and high efficiency higher than 95%. The CAESL circuit can tolerate ESL voltage variation from 0 to 50mV even when operation temperature varies from -40 to 120℃.
Keyword: calibrated anti-ESL (CAESL), calibrated gain and BW (CGB), equivalent series resistance (ESR), equivalent series inductor (ESL)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.