A facile and highly efficient magnetic solid-phase extraction method has been developed for Z-ligustilide, the major therapeutic agent in Angelica sinensis. The solid-phase adsorbent material used was prepared by conjugating carbon nanotubes with magnetic Fe3 O4 nanoparticles via a hydrothermal reaction. The magnetic material showed a high affinity toward Z-ligustilide due to the π-π stacking interaction between the carbon nanotubes and Z-ligustilide, allowing a quick and selective exaction of Z-ligustilide from complex sample matrices. Factors influencing the magnetic solid-phase extraction such as the amount of the added adsorbent, adsorption and desorption time, and desorption solvent, were investigated. Due to its high extraction efficiency, this method was proved highly useful for sample cleanup/enrichment in quantitative high-performance liquid chromatography analysis. The proposed method had a linear calibration curve (R(2) = 0.9983) over the concentration between 4 ng/mL and 200 μg/mL Z-ligustilide. The accuracy of the method was determined by the recovery, which was from 92.07 to 104.02%, with the relative standard deviations >4.51%.
A microchip capillary electrophoresis coupled with laser induced fluorescence detection method for the fast determination of aloin was developed and comprehensively applied for the quantification of aloin A and B present in seven aloe plant species, 42 aloin-containing crude drugs, ten aloe pharmaceutical preparations, and four aloe gel-containing functional foods. The excitation and emission wavelengths for detection of both aloins were set at 473 and 520 nm, respectively. Sample analysis on a 35 mm length of glass microchip channel was completed within 40 s. An interference study indicated that the other main anthraquinones present in the samples did not interrupt with the target aloins detection, demonstrating the good selectivity of this method. It is demonstrated that this method is fast, facile, and specific for determination of aloin A and B from matrix samples which can be applied to the quality control of a wide varieties of aloe species and aloe-derived products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.