The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules 1. Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins 2. Some BAs (~5%) escape into the colon, where gut commensal bacteria convert them into a variety of intestinal BAs 2 that are important hormones regulating host cholesterol metabolism and energy balance via several nuclear receptors and/or G protein-coupled receptors 3,4. These receptors play pivotal roles in shaping host innate immune responses 1,5. However, the impact of this host-microbe biliary network on the adaptive immune system remains poorly characterized. Here we report that both dietary and microbial factors influence the composition of the gut BA pool and modulate an important population of colonic Foxp3 + regulatory T cells (Tregs) expressing the transcriptional factor RORγ. Genetic abolition of BA metabolic pathways in individual gut symbionts significantly decreases this Treg population. Restoration of the intestinal BA pool increases colonic RORγ + Treg levels and ameliorates host susceptibility to inflammatory colitis via BA nuclear receptors. Thus, a pan-genomic biliary network interaction between hosts and their bacterial symbionts can control host immunologic homeostasis via the resulting metabolites.
Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high-and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H 2 S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H 2 -producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H 2 -consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.artificial human gut microbiota/microbiome | determinants of microbial fitness | hydrogenotrophs | microbial foodwebs | hydrogen sulfide
Bacterial viruses (phages) are the most abundant biological group on Earth and are more genetically diverse than their bacterial prey/ hosts. To characterize their role as agents shaping gut microbial community structure, adult germ-free mice were colonized with a consortium of 15 sequenced human bacterial symbionts, 13 of which harbored one or more predicted prophages. One member, Bacteroides cellulosilyticus WH2, was represented by a library of isogenic transposon mutants that covered 90% of its genes. Once assembled, the community was subjected to a staged phage attack with a pool of live or heat-killed virus-like particles (VLPs) purified from the fecal microbiota of five healthy humans. Shotgun sequencing of DNA from the input pooled VLP preparation plus shotgun sequencing of gut microbiota samples and purified fecal VLPs from the gnotobiotic mice revealed a reproducible nonsimultaneous pattern of attack extending over a 25-d period that involved five phages, none described previously. This system allowed us to (i) correlate increases in specific phages present in the pooled VLPs with reductions in the representation of particular bacterial taxa, (ii) provide evidence that phage resistance occurred because of ecological or epigenetic factors, (iii) track the origin of each of the five phages among the five human donors plus the extent of their genome variation between and within recipient mice, and (iv) establish the dramatic in vivo fitness advantage that a locus within a B. cellulosilyticus prophage confers upon its host. Together, these results provide a defined community-wide view of phage-bacterial host dynamics in the gut.T he human gut is home to tens of trillions of microbial cells representing all three domains of life, although most are bacteria. These organisms collaborate and compete for functional niches and physical locations (habitats). Together, they form a continuously functioning microbial metabolic "organ." The microbial diversity, interpersonal variation, and dynamism of the human gut microbiota make the task of identifying the factors that define community configurations extremely challenging.In some ecosystems, phages maintain high bacterial strain level diversity through lysis of their host strains (constant diversity dynamics model; refs 1, 2). The resulting emptied niche is filled with either an evolved resistant bacterial strain or a taxonomically closely related bacterial species. These dynamics have been observed in open marine environments (1). In contrast, a recent study of 37 healthy adults indicated that a person's fecal microbiota was remarkably stable, with 60% of bacterial strains retained over the course of 5 y (3). Stability followed a power law dynamic that when extrapolated suggests that most strains in an individual's gut community are retained for decades (3). In a metagenomic analysis of virus-like particles (VLPs) purified from the fecal microbiota of healthy adult monozygotic twins and their mothers, sampled over the course of a year, viral community structure exh...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.