Covid-19 CasesTo rapidly communicate information on the global clinical effort against Covid-19, the Journal has initiated a series of case reports that offer important teaching points or novel findings. The case reports should be viewed as observations rather than as recommendations for evaluation or treatment. In the interest of timeliness, these reports are evaluated by in-house editors, with peer review reserved for key points as needed. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19We describe a patient with Covid-19 and clinically significant coagulopathy, antiphospholipid antibodies, and multiple infarcts. He was one of three patients with these findings in an intensive care unit designated for patients with Covid-19. This unit, which was managed by a multidisciplinary team from Peking Union Medical College Hospital in the Sino-French New City Branch of Tongji Hospital in Wuhan, China, was set up on an emergency basis to accept the most critically ill patients during the outbreak of Covid-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was confirmed in all the patients by reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay or serologic testing.A 69-year-old man with a history of hypertension, diabetes, and stroke presented with fever, cough, dyspnea, diarrhea, and headache. Covid-19 was diagnosed in the patient on January 25, 2020, on the basis of RT-PCR testing that detected SARS-CoV-2. The initial treatment was supportive; however, the illness subsequently progressed to hypoxemic respiratory failure warranting the initiation of invasive mechanical ventilation.
Background The emergence of coronavirus disease 2019 (COVID-19) is a major healthcare threat. The current method of detection involves a quantitative polymerase chain reaction (qPCR)–based technique, which identifies the viral nucleic acids when present in sufficient quantity. False-negative results can be achieved and failure to quarantine the infected patient would be a major setback in containing the viral transmission. We aim to describe the time kinetics of various antibodies produced against the 2019 novel coronavirus (SARS-CoV-2) and evaluate the potential of antibody testing to diagnose COVID-19. Methods The host humoral response against SARS-CoV-2, including IgA, IgM, and IgG response, was examined by using an ELISA-based assay on the recombinant viral nucleocapsid protein. 208 plasma samples were collected from 82 confirmed and 58 probable cases (qPCR negative but with typical manifestation). The diagnostic value of IgM was evaluated in this cohort. Results The median duration of IgM and IgA antibody detection was 5 (IQR, 3–6) days, while IgG was detected 14 (IQR, 10–18) days after symptom onset, with a positive rate of 85.4%, 92.7%, and 77.9%, respectively. In confirmed and probable cases, the positive rates of IgM antibodies were 75.6% and 93.1%, respectively. The detection efficiency by IgM ELISA is higher than that of qPCR after 5.5 days of symptom onset. The positive detection rate is significantly increased (98.6%) when combining IgM ELISA assay with PCR for each patient compared with a single qPCR test (51.9%). Conclusions The humoral response to SARS-CoV-2 can aid in the diagnosis of COVID-19, including subclinical cases.
Inflammation is essential in the initial development and progression of many cardiovascular diseases involving innate and adaptive immune responses. The role of CD4(+)CD25(+)FOXP3(+) regulatory T (TREG) cells in the modulation of inflammation and immunity has received increasing attention. Given the important role of TREG cells in the induction and maintenance of immune homeostasis and tolerance, dysregulation in the generation or function of TREG cells can trigger abnormal immune responses and lead to pathology. A wealth of evidence from experimental and clinical studies has indicated that TREG cells might have an important role in protecting against cardiovascular disease, in particular atherosclerosis and abdominal aortic aneurysm. In this Review, we provide an overview of the roles of TREG cells in the pathogenesis of a number of cardiovascular diseases, including atherosclerosis, hypertension, ischaemic stroke, abdominal aortic aneurysm, Kawasaki disease, pulmonary arterial hypertension, myocardial infarction and remodelling, postischaemic neovascularization, myocarditis and dilated cardiomyopathy, and heart failure. Although the exact molecular mechanisms underlying the cardioprotective effects of TREG cells are still to be elucidated, targeted therapies with TREG cells might provide a promising and novel future approach to the prevention and treatment of cardiovascular diseases.
Objective Coagulopathy is one of the characteristics observed in critically ill patients with coronavirus disease 2019 (COVID‐19). Antiphospholipid antibodies (aPLs) contribute to coagulopathy, though their role in COVID‐19 remains unclear. This study was undertaken to determine the prevalence and characteristics of aPLs in patients with COVID‐19. Methods Sera collected from 66 COVID‐19 patients who were critically ill and 13 COVID‐19 patients who were not critically ill were tested by chemiluminescence immunoassay for anticardiolipin antibodies (aCLs), anti–β2‐glycoprotein I (anti‐β2GPI) (IgG, IgM, and IgA), and IgG anti‐β2GPI–domain 1 (anti‐β2GPI–D1) and IgM and IgG anti–phosphatidylserine/prothrombin (anti‐PS/PT) antibodies were detected in the serum by enzyme‐linked immunosorbent assay. Results Of the 66 COVID‐19 patients in critical condition, aPLs were detected in 31 (47% ). Antiphospholipid antibodies were not present among COVID‐19 patients who were not in critical condition. The IgA anti‐β2GPI antibody was the most commonly observed aPL in patients with COVID‐19 and was present in 28.8% (19 of 66) of the critically ill patients, followed by IgA aCLs (17 of 66, or 25.8%) and IgG anti‐β2GPI (12 of 66, or 18.2%). For multiple aPLs, IgA anti‐β2GPI + IgA aCLs was the most common antibody profile observed (15 of 66, or 22.7%), followed by IgA anti‐β2GPI + IgA aCL + IgG anti‐β2GPI (10 of 66, or 15.2%). Antiphospholipid antibodies emerge ~35–39 days after disease onset. A dynamic analysis of aPLs revealed 4 patterns based on the persistence or transient appearance of the aPLs. Patients with multiple aPLs had a significantly higher incidence of cerebral infarction compared to patients who were negative for aPLs (P = 0.023). Conclusion Antiphospholipid antibodies were common in critically ill patients with COVID‐19. Repeated testing demonstrating medium to high titers of aPLs and the number of aPL types a patient is positive for may help in identifying patients who are at risk of developing cerebral infarction. Antiphospholipid antibodies may be transient and disappear within a few weeks, but in genetically predisposed patients, COVID‐19 may trigger the development of an autoimmune condition similar to the antiphospholipid syndrome (APS), referred to as “COVID‐19–induced APS‐like syndrome.” Long‐term follow‐up of COVID‐19 patients who are positive for aPLs would be of great importance in understanding the pathogenesis of this novel coronavirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.