Access of photovoltaic system (PVS) to distribution network impacts voltage and power losses and also other related parameters. In order to make full use of the advantages of PVS and determine its optimal location and capacity, an optimal allocation's method for grid-connected PVS is proposed in this paper. This method takes the active power losses minimization as the optimization goal, divides the distribution feeder system into several paths to determine the path priority to install PVS according to active power load moment (APLM). The allowable maximum and minimum active power of grid-connected PVS for each bus are calculated via voltage sensitivity. The improved artificial bee colony (IABC) algorithm that selects initial solution by using path priority and active power restrictions of grid-connected PVS is applied to achieve the optimal allocation of PVSs. This method was examined with IEEE 33-bus feeder system, and the optimal locations and capacities for different numbers of grid-connected PVSs are determined. The results obtained by the proposed IABC algorithm were compared with the results obtained by the artificial bee colony (ABC) algorithm and particle swarm optimization and those attained via other methods. The results show that the proposed method is feasible and 1 / 3 2019 N 5 s11 effective. References 11, figures 7. tables 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.