In this work, we demonstrate a thorough device design, fabrication, characterization, and analysis of biomimetic antireflective structures implemented on a Ga 0.5 In 0.5 P/GaAs/Ge triple-junction solar cell. The sub-wavelength structures are fabricated on a silicon nitride passivation layer using polystyrene nanosphere lithography followed by anisotropic etching. The fabricated structures enhance optical transmission in the ultraviolet wavelength range, compared to a conventional single-layer antireflective coating (ARC). The transmission improvement contributes to the enhanced photocurrent, which is also verified by the external quantum efficiency characterization of fabricated solar cells. Under one-sun illumination, the short-circuit current of a cell with a biomimetic structures is enhanced by 24.1% and 2.2% due to much improved optical transmission and current matching, compared to cells without an ARC and with a conventional ARC, respectively. Further optimizations of the biomimetic structures including the periodicity and etching depth are conducted by performing comprehensive calculations based on a rigorous couple-wave analysis method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.