Countermeasures to prevent and treat COVID-19 are a global health priority. We enrolled a cohort of SARS-CoV-2-recovered participants, developed neutralization assays to interrogate antibody responses, adapted our high-throughput antibody generation pipeline to rapidly screen over 1800 antibodies, and established an animal model to test protection. We isolated potent neutralizing antibodies (nAbs) to two epitopes on the receptor binding domain (RBD) and to distinct non-RBD epitopes on the spike (S) protein. We showed that passive transfer of a nAb provides protection against disease in high-dose SARS-CoV-2 challenge in Syrian hamsters, as revealed by maintained weight and low lung viral titers in treated animals. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs define protective epitopes to guide vaccine design.
I.A.W.)The outbreak of COVID-19 caused by SARS-CoV-2 virus has now become a pandemic, but there is currently very little understanding of the antigenicity of the virus. We therefore determined the crystal structure of CR3022, a neutralizing antibody previously isolated from a convalescent SARS patient, in complex with the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein to 3.1 Å. CR3022 targets a highly conserved epitope, distal from the receptor-binding site, that enables cross-reactive binding between SARS-CoV-2 and SARS-CoV. Structural modeling further demonstrates that the binding epitope can only be accessed by CR3022 when at least two RBD on the trimeric S protein are in the "up" conformation and slightly rotated. Overall, this study provides molecular insights into antibody recognition of SARS-CoV-2.
Molecular understanding of neutralizing antibody responses to SARS-CoV-2 could accelerate vaccine design and drug discovery. We analyzed 294 anti-SARS-CoV-2 antibodies and found that IGHV3-53 is the most frequently used IGHV gene for targeting the receptor-binding domain (RBD) of the spike protein. Co-crystal structures of two IGHV3-53 neutralizing antibodies with RBD, with or without Fab CR3022, at 2.33 to 3.20 Å resolution revealed that the germline-encoded residues dominate recognition of the ACE2 binding site. This binding mode limits the IGHV3-53 antibodies to short CDR H3 loops, but accommodates light-chain diversity. These IGHV3-53 antibodies show minimal affinity maturation and high potency, which is promising for vaccine design. Knowledge of these structural motifs and binding mode should facilitate design of antigens that elicit this type of neutralizing response.
ABSTRACTThe outbreak of COVID-19, which is caused by SARS-CoV-2 virus, continues to spread globally, but there is currently very little understanding of the epitopes on the virus. In this study, we have determined the crystal structure of the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein in complex with CR3022, a neutralizing antibody previously isolated from a convalescent SARS patient. CR3022 targets a highly conserved epitope that enables cross-reactive binding between SARS-CoV-2 and SARS-CoV. Structural modeling further demonstrates that the binding site can only be accessed when at least two RBDs on the trimeric S protein are in the “up” conformation. Overall, this study provides structural and molecular insight into the antigenicity of SARS-CoV-2.ONE SENTENCE SUMMARYStructural study of a cross-reactive SARS antibody reveals a conserved epitope on the SARS-CoV-2 receptor-binding domain.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. Here, we generated four neutralizing nanobodies that target the receptor-binding domain of the SARS-CoV-2 spike protein. We defined two distinct binding epitopes using x-ray crystallography and cryo-electron microscopy. Based on the structures, we engineered multivalent nanobodies with more than 100-fold improved neutralizing activity than monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor-binding competition, while other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion, and rendered the virions non-infectious.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.