This study examines the performance of a hybrid ensemble-variational data assimilation system (E3DVar) that couples an ensemble Kalman filter (EnKF) with the three-dimensional variational data assimilation (3DVar) system for the Weather Research and Forecasting (WRF) Model. The performance of E3DVar and the component EnKF and 3DVar systems are compared over the eastern United States for June 2003. Conventional sounding and surface observations as well as data from wind profilers, aircraft and ships, and cloud-tracked winds from satellites, are assimilated every 6 h during the experiments, and forecasts are verified using standard sounding observations. Forecasts with 12-to 72-h lead times are found to have noticeably smaller root-mean-square errors when initialized with the E3DVar system, as opposed to the EnKF, especially for the 12-h wind and moisture fields. The E3DVar system demonstrates similar performance as an EnKF, while using less than half the number of ensemble members, and is less sensitive to the use of a multiphysics ensemble to account for model errors. The E3DVar system is also compared with a similar hybrid method that replaces the 3DVar component with the WRF four-dimensional variational data assimilation (4DVar) method (denoted E4DVar). The E4DVar method demonstrated considerable improvements over E3DVar for nearly all model levels and variables at the shorter forecast lead times (12-48 h), but the forecast accuracies of all three ensemble-based methods (EnKF, E3DVar, and E4DVar) converge to similar results at longer lead times (60-72 h). Nevertheless, all methods that used ensemble information produced considerably better forecasts than the two methods that relied solely on static background error covariance (i.e., 3DVar and 4DVar).
A novel three-dimensional (3D) hermetic packaging technique suitable for capacitive microelectromechanical systems (MEMS) sensors is studied. The composite substrate with through silicon via (TSV) is used as the encapsulation cap fabricated by a glass-in-silicon (GIS) reflow process. In particular, the low-resistivity silicon pillars embedded in the glass cap are designed to serve as the electrical feedthrough and the fixed capacitance plate at the same time to simplify the fabrication process and improve the reliability. The fabrication process and the properties of the encapsulation cap were studied systematically. The resistance of the silicon vertical feedthrough was measured to be as low as 263.5 mΩ, indicating a good electrical interconnection property. Furthermore, the surface root-mean-square (RMS) roughnesses of glass and silicon were measured to be 1.12 nm and 0.814 nm, respectively, which were small enough for the final wafer bonding process. Anodic bonding between the encapsulation cap and the silicon wafer with sensing structures was conducted in a vacuum to complete the hermetic encapsulation. The proposed packaging scheme was successfully applied to a capacitive gyroscope. The quality factor of the packaged gyroscope achieved above 220,000, which was at least one order of magnitude larger than that of the unpackaged. The validity of the proposed packaging scheme could be verified. Furthermore, the packaging failure was less than 1%, which demonstrated the feasibility and reliability of the technique for high-performance MEMS vacuum packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.