For porous protein scaffolds to be employed in tissue-engineered structures, the development of cost-effective, macroporous, and mechanically improved protein-based hydrogels, without compromising the original properties of native protein, is crucial. Here, we introduced a facile method of albumin methacryloyl transparent hydrogels and opaque cryogels with adjustable porosity and improved mechanical characteristics via controlling polymerization temperatures (room temperature and −80 °C). The structural, morphological, mechanical, and physical characteristics of both porous albumin methacryloyl biomaterials were investigated using FTIR, CD, SEM, XRD, compression tests, TGA, and swelling behavior. The biodegradation and biocompatibility of the various gels were also carefully examined. Albumin methacryloyl opaque cryogels outperformed their counterpart transparent hydrogels in terms of mechanical characteristics and interconnecting macropores. Both materials demonstrated high mineralization potential as well as good cell compatibility. The solvation and phase separation owing to ice crystal formation during polymerization are attributed to the transparency of hydrogels and opacity of cryogels, respectively, suggesting that two fully protein-based hydrogels could be used as visible detectors/sensors in medical devices or bone regeneration scaffolds in the future.
A crucial method for adding new functions to current biomaterials for biomedical applications has been surface functionalization via molecular design. Mussel-inspired polydopamine (PDA) has generated much attention as a facile method for the functionalization of biomaterials because of its substantial independence in deposition, beneficial cell interactions, and significant responsiveness aimed at secondary functionalization. Because of their porous structure, the bovine serum albumin methacryloyl (BSAMA)-BM cryogels were functionalized with PDA (BM˗PDA), which may reproduce the architecture and biological purpose of the natural extracellular environment. Excellent antioxidative and antibacterial qualities, improved mineralization, and better cell responsiveness were all demonstrated by BM˗PDA. BM˗PDA scaffolds maintained their linked and uniform pores after functionalization, which can make it easier for nutrients to be transported during bone repair. As a result, hydroxyapatite (HA)-coated BM* and BM˗PDA* cryogels were created through successive mineralization with the goal of mineralized bone tissue repair. The heterogeneous nucleation and surface roughness contributed to rod-like apatite production in BM˗PDA* cryogels whereas BM* cryogels were made up of plate-like HA morphologies. Analysis results showed that after five cycles, the mineral contents were around 57% and the HA units remained equally dispersed on the surface of BM˗PDA* with a Ca/P ratio of 1.63. Other natural polymer-based cryogels can be coated using this general, rapid, and simple PDA coating technique and utilized as implants for bone tissue engineering. Future clinical uses of albumin cryogels for bone tissue engineering will advance as a result of additional in-vivo testing of such PDA-coated cryogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.