The epithelial to mesenchymal transition (EMT) is considered to be an important event during malignant tumor progression and metastasis. Although Raf/MEK/ERK signaling causes EMT, the mechanisms, including the signaling pathways, are as yet unclear. In the present study we have examined the effects of signal transduction pathways on oncogenic Raf-1-induced EMT, using an immortalized mouse hepatic cell line. Oncogenic Raf-1-induced EMT is characterized by down-regulation of adherens and tight junctions and the reorganization of actin. An active Raf-1 gene was introduced into a mouse hepatic cell line which was then treated with the MAP kinase inhibitor PD98059, the p38 MAP kinase inhibitor SB203580, the PI3 kinase inhibitor LY294002 or the c-Src tyrosine kinase inhibitor PP2. The expression and localization of the adherens and tight junction proteins E-cadherin, occludin, ZO-1, claudin-1 and claudin-2 were determined by western blotting, RT-PCR and immunocytochemistry. The barrier function of tight junctions was assessed by measurements of transepithelial electric resistance (TER) and permeability in terms of fluxes of [(14)C]mannitol and [(14)C]inulin. In Raf-1-transfected cells expression of occludin and claudin-2 was markedly down-regulated at the protein and mRNA levels and the TER value was decreased, while the permeability was increased. The distribution of ZO-1, pancadherin and F-actin was changed from linear to zipper-like structures at cell borders. In Raf-1-transfected cells treated with PD98059 and SB203580, but not LY294002, expression and localization of claudin-2, but not occludin, recovered, together with barrier function, measured as the TER value. The distributions of ZO-1, pancadherin and F-actin also recovered on treatment with PD98059 and SB203580, but not LY294002. Expression and localization of occludin recovered slightly on treatment with PP2. Thus, oncogenic Raf-1 regulates EMT via distinct MAP kinase, p38 MAP kinase and c-Src tyrosine kinase signal pathways in the mouse hepatic cell line.
The signal transduction pathways and activation of the MAP kinase or PI3 kinase signaling cascade regulate a variety of cellular processes, including proliferation and differentiation in hepatocytes. To elucidate the mechanisms of signal transmission required for the regulation of gap and tight junctions during DNA synthesis in rat hepatocytes, we determined changes of expression and function of gap and tight junctions of cells grown in primary culture, using inhibitors of signaling pathways for MAP kinase (PD98059) and PI3 kinase (LY294002). During the stimulation of DNA synthesis induced by epidermal growth factor (EGF), immunoreactivity and mRNAs of gap junction protein Cx32 and of tight junction protein claudin-1 markedly decreased with reduction of gap junctional intercellular communication (GJIC) and the fence function of tight junctions. In Western blots, whole-cell lysate of claudin-1 protein decreased and phosphorylated Cx32 protein in the insoluble fraction of Triton X-100 increased during the stimulation of DNA synthesis. During reinhibition of DNA synthesis, the changes of Cx32 and claudin-1 returned to control levels, as did both functions. In treatment with the inhibitors before DNA synthesis, PD98059 inhibited the changes of expression and function of Cx32, but not claudin-1, without inhibition of cell growth, whereas LY294002 completely inhibited cell growth. These findings indicate that the PI3 kinase pathway rather than the MAP kinase pathway plays an important role for EGF-induced proliferation of rat hepatocytes, and that changes of Cx32 in hepatocytes during the stimulation of DNA synthesis may be in part controlled through MAP kinase. Furthermore, Cx32, but not claudin-1, protein may be a target of activated MAP kinase in hepatocytes.
Liver regeneration and cholestasis are associated with adaptive changes in expression of gap and tight junctions through signal transduction. The roles of stress responsitive MAP-kinase, p38 MAP-kinase, in the signaling pathway for gap junction protein, Cx32, and tight junction protein, claudin-1, were examined in rat liver in vivo and in vitro, including regeneration following partial hepatectomy and cholestasis after common bile duct ligation. Changes in the expression and function of Cx32 and claudin-1 in hepatocytes in vivo were studied using the p38 MAP-kinase inhibitor SB203580. Following partial hepatectomy and common bile duct ligation, down-regulation of Cx32 protein was inhibited by SB203580 treatment. Up-regulation of claudin-1 protein was enhanced by SB203580 treatment after partial hepatectomy but not common bile duct ligation. However, no change of the Ki-67 labeling index (which is a marker for cell proliferation) in the livers treated with SB203580, was observed compared to that without SB203580 treatment. In primary cultures of rat hepatocytes, however, treatment with a p38 MAP-kinase activator, anisomycin, decreased Cx32 and claudin-1 protein levels. p38 MAP-kinase may be an important signaling pathway for regulation of gap and tight junctions in hepatocytes. Changes of gap and tight junctions during liver regeneration and cholestasis are shown to be in part controlled via the p38 MAP-kinase signaling pathway and are independent of cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.