Quantum mechanics is often thought to be a difficult subject to understand, not only in the complexity of its mathematics but also in its conceptual foundation. In this paper we emphasize students’ depictions of the uncertainty principle and wave-particle duality of quantum events, phenomena that could serve as a foundation in building an understanding of quantum mechanics. A phenomenographic study was carried out to categorize a picture of students’ descriptions of these key quantum concepts. Data for this study were obtained from a semistructured in-depth interview conducted with undergraduate physics students (N=25) from Bahir Dar, Ethiopia. The phenomenographic data analysis revealed that it is possible to construct three qualitatively different categories to map students’ depictions of the concept wave-particle duality, namely, (1) classical description, (2) mixed classical-quantum description, and (3) quasiquantum description. Similarly, it is proposed that students’ depictions of the concept uncertainty can be described with four different categories of description, which are (1) uncertainty as an extrinsic property of measurement, (2) uncertainty principle as measurement error or uncertainty, (3) uncertainty as measurement disturbance, and (4) uncertainty as a quantum mechanics uncertainty principle. Overall, we found students are more likely to prefer a classical picture of interpretations of quantum mechanics. However, few students in the quasiquantum category applied typical wave phenomena such as interference and diffraction that cannot be explained within the framework classical physics for depicting the wavelike properties of quantum entities. Despite inhospitable conceptions of the uncertainty principle and wave- and particlelike properties of quantum entities in our investigation, the findings presented in this paper are highly consistent with those reported in previous studies. New findings and some implications for instruction and the curricula are discussed
The aim of this paper is to deal with two integral transforms involving the Appell function as their kernels. We prove some compositions formulas for generalized fractional integrals with k-Bessel function. The results are expressed in terms of generalized Wright type hypergeometric function and generalized hypergeometric series. Also, the authors presented some related assertion for Saigo, Riemann-Liouville type, and Erdélyi-Kober type fractional integral transforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.