The recalcitrant understory fern layer is an important ecological filter for seedling regeneration, yet how the fern layer influences seedling regeneration dynamics remains unclear. Here we transplanted 576 seedlings of four dominant tree species, Castanopsis fargesii, Lithocarpus glaber, Schima superba and Hovenia acerba, to the treatments of Diplopterygium glaucum retention and removal under an evergreen broad-leaved forest in eastern China. We monitored the survival, growth and biomass data of these seedlings for 28 months, and then used generalized linear mixed models to evaluate the treatment effects on seedling survival, growth, biomass and root-shoot ratio. Our results showed that fern retention significantly inhibited the seedling establishment of all four species. During the seedling development stage, the seedling relative growth rate of L. glaber decreased under fern retention, which was not the case for the other three species. Root-shoot ratio of C. fargesii and L. glaber increased significantly under fern retention. Our findings provide new evidence of the filtering effect of a recalcitrant fern understory. Notably, we observed that the response of tree seedlings to the recalcitrant fern understory was more sensitive in the establishment stage. Finally, our work highlights that the filtering effect of the recalcitrant fern understory changes depending on the regeneration stages, and that shade-tolerant species, C. fargesii and L. glaber were even more affected by fern disturbed habitats, suggesting that effective management should attempt to curb forest fern outbreaks, thus unblocking forest recruitment.
Forest productivity (increment of above-ground biomass) is determined by biodiversity but also by stand structure attributes. However, the relative strengths of these drivers in determining productivity remain controversial in subtropical forests. In this study, we analyzed a tree growth data from 500 plots with in a 20 ha mature subtropical forest in eastern China. We used spatial simultaneous autoregressive error models to examine the effects of diversity variables (species richness, evenness, and composition), stand structural attributes (stand density, tree size range and diversity), environmental factors (topography and soil), and initial above-ground biomass (AGB) on productivity. We also applied structural equation models to quantify the relative importance of diversity, stand structure, environmental factors, and initial AGB in determining forest productivity. Our results showed that stand structure together with diversity and initial AGB governed forest productivity. Tree size diversity (DBH Shannon’s diversity index) had the largest positive effect on forest productivity. These results provide new evidence that structural explanatory variables have greater contributions to productivity for mature subtropical forests, strongly supporting the niche complementarity hypothesis. Our work highlights the importance of tree size diversity in promoting high forest productivity, and suggests that regulating and conserving complexity of forest stand structure should be among the most important goals in subtropical forest management.
Neighborhood effects are a crucial ecological process that allow species to coexist in a forest. Conspecific and heterospecific neighbors, as major classified groups, affect tree mortality through various mechanisms associating with neighbor life stages. However, how neighbor life stages influence neighborhood effects and by what mechanisms remains a knowledge gap. Here we censused the mortality of 82,202 trees representing 30 species in a 20-ha subtropical forest and classified their neighbors into the following life stages: earlier, same and later. Then, we ran generalized linear mixed models to estimate the effect of neighbors at different life stages on tree mortality. Our results showed that conspecific later stage neighbors have effects on increasing tree mortality overall, whereas conspecific earlier stage neighbors have effects on decreasing. Furthermore, these opposing effects could offset each other so that the overall effect of conspecific neighbors on juvenile mortality seems small. In contrast, heterospecific neighbors have effects on decreasing tree mortality overall. These effects are consistent with those of later stage heterospecific neighbors. Our findings demonstrate that neighbors importantly impact tree mortality, and their specific effects are closely related to neighbor life stages. Any single effect from one neighbor life stage could disturb or dominate the total effects of the neighbors. Therefore, the neighbors must be divided into different life stages to best explain the neighborhood effect on forest dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.