Acetyl-CoA Synthetase 2 (ACSS2) belongs to a member of the acyl-CoA short-chain synthase family, which can convert acetate in the cytoplasm and nucleus into acetyl-CoA. It has been proven that ACSS2 is highly expressed in glioblastoma, breast cancer, liver cancer, prostate cancer, bladder cancer, renal cancer, and other tumors, and is closely related to tumor stage and the overall survival rate of patients. Accumulating studies show that hypoxia and a low serum level induce ACSS2 expression to help tumor cells cope with this nutrient-poor environment. The potential mechanisms are associated with the ability of ACSS2 to promote the synthesis of lipids in the cytoplasm, induce the acetylation of histones in the nucleus, and facilitate the expression of autophagy genes. Novel-specific inhibitors of ACSS2 are developed and confirmed to the effectiveness in pre-clinical tumor models. Targeting ACSS2 may provide novel approaches for tumor treatment. This review summarizes the biological function of ACSS2, its relation to survival and prognosis in different tumors, and how ACSS2 mediates different pathways to promote tumor metastasis, invasion, and drug resistance.
Angiopoietin-2 (Ang2), a member of the angiopoietin family, is widely involved in the process of vascular physiology, bone physiology, adipose tissue physiology and the occurrence and development of inflammation, cardiac hypertrophy, rheumatoid, tumor and other diseases under pathological conditions. Proliferation and metastasis of cancer largely depend on angiogenesis. Therefore, anti-angiogenesis has become the target of tumor therapy. Due to the Ang2 plays a key role in promoting angiogenesis and stability in vascular physiology, the imbalance of its expression is an important condition for the occurrence and development of cancer. It has been proved that blocking Ang2 can inhibit the growth, invasion and metastasis of cancer cells. In recent years, research has been constantly supplemented. We focus on the mechanisms that regulate the expression of Ang2 mRNA and protein levels in different cancers, contributing to a better understanding of how Ang2 exerts different effects in different cancers and stages, as well as facilitating more specific targeting of relevant molecules in cancer therapy. At the same time, the importance of Ang2 in cancer growth, metastasis, prognosis and combination therapy is pointed out. And finally, we will discuss the current investigations and future challenges of combining Ang2 inhibition with chemotherapy, immunotherapy, and radiotherapy to increase its efficacy in cancer patients. This review provides a theoretical reference for the development of new targets and effective combination therapy strategies for cancer treatment in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.