Land-use practices such as mowing and nitrogen (N) fertilization can have significant impacts on plant stoichiometry. However, the interactive effects of mowing and N fertilization on the community-level plant stoichiometry and the underlying processes are not well understood. We examined the impacts of mowing (once a year) and N fertilization (12 g N m−2 yr−1) on the community-level plant stoichiometry in a semi-arid grassland on the Loess Plateau. Results obtained showed that mowing alone had no effect on the community-level plant N or phosphorus (P) concentration. N fertilization alone significantly reduced the community-level plant P concentration, but did not affect the community-level plant N concentration, leading to an enhancement of plant N:P ratio. However, mowing altered the effects of N fertilization, leading to a higher plant N (and P) concentration than the fertilization-only plots. Also, mowing significantly reduced soil nitrate (NO3
−), but increased soil temperature, photosynthetic active radiation, plant diversity, richness and gross ecosystem productivity. In addition, mowing and N fertilization significantly affected plant community composition through shifting dominant plant functional groups (PFGs) (e.g. asteraceae, forbs and grass). Further, our structural equation modeling analysis showed that shifts in PFGs played an important role in regulating plant stoichiometry under mowing and N fertilization. Together, these results illustrate that effective management of mowing and N fertilization may induce changes in soil limiting nutrients and shifts in plant community composition, potentially altering plant N:P stoichiometry at the community level.
We present GluStack, a virtual machine(VM) cluster system based on OpenStack using the KVM hypervisor and GlusterFS distributed file system. Software assembly is one of GluStack's most important features that different software chains can be based on the same base image to start different types of VM instance so as to satisfy variable working scenarios for different users easily. We also developed a new VM image format for QEMU called LBCS that implements the feature of image local block caching and sharing to achieve high I/O performance and enable instant VM startup in the GluStack architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.