. Modeling dependent competing failure processes with degradation-shock dependence. Reliability Engineering and System Safety, Elsevier, 2017, 165, pp.422 -430
Highlights
24 A new reliability model is developed for degradation-shock dependence.
25 The influence of degradations on random shocks is considered.
26 Zone effect of random shocks magnitudes is considered.
A sequential Bayesian approach is presented for remaining useful life (RUL) prediction of dependent competing failure processes (DCFP). The DCFP considered comprises of soft failure processes due to degradation and hard failure processes due to random shocks, where dependency arises due to the abrupt changes to the degradation processes brought by the random shocks. In practice, random shock processes are often unobservable, which makes it difficult to accurately estimate the shock intensities and predict the RUL. In the proposed method, the problem is solved recursively in a two-stage framework: in the first stage, parameters related to the degradation processes are updated using particle filtering, based on the degradation data observed through condition monitoring; in the second stage, the intensities of the random shock processes are updated using the Metropolis-Hastings algorithm, considering the dependency between the degradation and shock processes, and the fact that no hard failure has occurred. The updated parameters are, then, used to predict the RUL of the system. Two numerical examples are considered for demonstration purposes and a real dataset from milling machines is used for application purposes. Results show that the proposed method can be used to accurately predict the RUL in DCFP conditions.
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.