Collecting circulating tumor cells (CTCs) shed from solid tumor through a minimally invasive approach provides an opportunity to solve a long-standing oncology problem, the real-time monitoring of tumor state and analysis of tumor heterogeneity. However, efficient capture and detection of CTCs with diverse phenotypes is still challenging. In this work, a microfluidic assay is developed using the rationally-designed aptamer cocktails with synergistic effect. Enhanced and differential capture of CTCs for nonsmall cell lung cancer (NSCLC) patients is achieved. It is also demonstrated that the overall consideration of CTC counts obtained by multiple aptamer combinations can provide more comprehensive information in treatment monitoring.
We report the fabrication, properties, and bacteria-resistance of polyelectrolyte complex (PEC) coatings and free-standing films. Poly(4-styrenesulfonic acid), poly(diallyldimethyl-ammonium chloride), and salt were spin-coated into PEC films. After thermal annealing in a humid environment, highly transparent, mechanically strong, and chemically robust films were formed. Notably, we demonstrate that PEC coatings significantly reduce the attachment of Escherichia coli K12 without killing the micro-organisms. We suggest that forming bacteria-resistant surface coatings from commercially available polymers holds the potential for use across a wide range of applications including high-touch surfaces in medical settings.
Directed evolution of a P450 hydroxylase (P450 BSβ ) achieves an engineered enzyme that is able to catalyze C−H oxyfunctionalization of fatty acids (FAs) in a highly regio-and enantioselective fashion (>20:1 Cβ/Cα and > 99% ee in all cases). The biocatalyst displays high reactivity (TON up to 1540), takes inexpensive H 2 O 2 as oxidant, and converts C11−C18 saturated FAs as well as naturally derived unsaturated oleic and linoleic acids to optically pure β-hydroxy FAs. Merging biocatalysis with chemical transformation, we further offer a chemoenzymatic strategy to access valuable FA derivatives bearing 1,3-diol, β-amino, β-lactone, and β-lactam functionalities in either enantiomeric form. Molecular docking studies provide a rationale for the regio-and enantioselectivity of this reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.