Spatiotemporal regulation of tumor immunity remains largely unexplored. Here we identify a vascular niche that controls alternative macrophage activation in glioblastoma (GBM). We show that tumor-promoting macrophages are spatially proximate to GBM-associated endothelial cells (ECs), permissive for angiocrine-induced macrophage polarization. We identify ECs as one of the major sources for interleukin-6 (IL-6) expression in GBM microenvironment. Furthermore, we reveal that colony-stimulating factor-1 and angiocrine IL-6 induce robust arginase-1 expression and macrophage alternative activation, mediated through peroxisome proliferator-activated receptor-γ-dependent transcriptional activation of hypoxia-inducible factor-2α. Finally, utilizing a genetic murine GBM model, we show that EC-specific knockout of IL-6 inhibits macrophage alternative activation and improves survival in the GBM-bearing mice. These findings illustrate a vascular niche-dependent mechanism for alternative macrophage activation and cancer progression, and suggest that targeting endothelial IL-6 may offer a selective and efficient therapeutic strategy for GBM, and possibly other solid malignant tumors.
The involvement of microRNAs (miRNAs) in the development of the neural crest (NC) cells and other neuronal differentiation is still poorly understood. Here, we investigated the global function of miRNAs in embryonic development by examining the Wnt1-cre-mediated Dicer knockout mice. Dicer ablation resulted in malformation of the midbrain and cerebellum and failure of NC and dopaminergic differentiation. First, the Dicer mutant fetuses exhibited dramatic malformation of the tectum and cerebellum and the eyelids were open. Second, the skeletal structures that are derived from the cranial NC were lost or mostly ablated in Dicer mutant mice. Third, deletion of Dicer in the NC cells resulted in the malformation of the dorsal root ganglia, enteric nervous system and sympathetic ganglia. Interestingly, the expression of neuropeptide Y and its potential regulators TrkA, AP-2alpha and AP-2beta was largely abolished in sympathetic neurons of Dicer mutant mice. Fourth, in situ hybridization data revealed that the expression of miR-9, miR-124 and miR-218 in the midbrain and rostral hindbrain area was mostly eliminated in the Dicer mutant mice. We then demonstrated that the development of dopaminergic neurons was impaired in Dicer-deleted mice. Our studies therefore suggest that miRNAs contribute to the embryonic development in multiple locations.
Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase-14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor-derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors.
Lipoprotein(a) [Lp(a)] resembles low-density lipoprotein (LDL), with an LDL lipid core and apolipoprotein B (apoB), but contains a unique apolipoprotein, apo(a). Elevated Lp(a) is an independent risk factor for coronary and peripheral vascular diseases. The size and concentration of plasma Lp(a) is related to the synthetic rate, not the catabolic rate, and is highly variable with small isoforms associated with high concentrations and pathogenic risk. Apo(a) is synthesized in the liver, although assembly of apo(a) and LDL may occur in the hepatocytes or plasma. While the uptake and clearance site of Lp(a) is poorly delineated, the kidney is the site of apo(a) fragment excretion. The structure of apo(a) has high homology to plasminogen, the zymogen for plasmin and the primary clot lysis enzyme. Apo(a) interferes with plasminogen binding to C-terminal lysines of cell surface and extracellular matrix proteins. Lp(a) and apo(a) inhibit fibrinolysis and accumulate in the vascular wall in atherosclerotic lesions. The pathogenic role of Lp(a) is not known. Small isoforms and high concentrations of Lp(a) are found in healthy octogenarians that suggest Lp(a) may also have a physiological role. Studies of Lp(a) function have been limited since it is not found in commonly studied small mammals. An important aspect of Lp(a) metabolism is the modification of circulating Lp(a), which has the potential to alter the functions of Lp(a). There are no therapeutic drugs that selectively target elevated Lp(a), but a number of possible agents are being considered. Recently, new modifiers of apo(a) synthesis have been identified. This review reports the regulation of Lp(a) metabolism and potential sites for therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.