Glacier surging is a dynamic instability that affects the flow of some glaciers, modifying the glacier area, surface velocity, and surface elevation. It is also among the major causes of ice dams and glacier lake floods. Previous studies have shown that in the West Kunlun Mountains| (WKM) where a cluster of surge‐type glaciers had been found, the glaciers were relatively stable in recent years. Nevertheless, the surge cycle and its impact on glacier changes on a regional scale are poorly understood. In this study, we updated the surge‐type glacier inventory of the WKM using the detailed changes in glacier length, surface velocity, and surface elevation during the 1972–2020 period using 78 Landsat optical images, 86 Sentinel‐1 synthetic aperture radar (SAR) images, and three digital elevation models of the WKM. The updated results show that among the 423 glaciers in the WKM, 10 are confirmed as surge‐type glaciers, three are likely surge‐type glaciers, and five are possible surge‐type glaciers. Furthermore, these 18 glaciers account for 63% of the total glacier area. During the period analyzed, there were marked changes in the lengths, areas and surface elevations of all surge‐type glaciers, while those of the non‐surge‐type glaciers were relatively stable. These results appear to indicate that the observed regional trends of glaciers in the WKM recently may be related to the existence of surge‐type glaciers. Furthermore, the surge‐type glacier underwent advance after accelerating for 3–4 years, which could be used to forecast when glacier termini may advance and avoid the possible catastrophic damages.
Glacier surge is a special form of glacier displacement caused by the instability of the glacial dynamic system. It is a quasi-periodic oscillation behavior, which affects the estimation of the overall change of glaciers in the region and potentially threatens the infrastructure and human life in the downstream regions. Most glaciers experience a mass loss with rising air temperatures in recent decades, but little attention has been paid to the influence of climate change on glacial surges. This study identified two surges, triggered in 1992 and 2015 in Weigeledangxiong Glacier, Ányêmaqên Mountains, northeastern Tibetan Plateau, using multi-source remote sensing data (Landsat images, Sentinel-2 images, topographic map, SRTM DEM, and the elevation change database). The 1992 surge accelerated abruptly with the maximum velocity of 350 ± 9 m a-1, and a large volume of ice transported downward, causing a sudden advance of 392 ± 42 m from 1992 to 1994, and clear thickening of the ice tongue. The recent surge is still in the active phase, exhibiting a gentler process of slower advance speed and lower peak velocity, as well as a smaller expansion zone than the previous one. These phenomena may be associated with the reduced glacier basal resistance and energy caused by rising temperatures in recent decades. Higher temperatures may cause the discharge of subglacial water through a more developed drainage system, leading to a longer active phase duration. Similar phenomena may exist widely in the Tibetan Plateau and its surrounding areas. Meanwhile, the frontal position of Weigeledangxiong Glacier advancing in the recent surge is not expected to threaten roads near the ice tongue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.