Congenital cataract is the most frequent inherited ocular disorder and the most leading cause of lifelong visual loss. The screening of pathogenic mutations can be very challenging in some cases, for congenital cataracts are clinically and genetically heterogeneous diseases. The aim of this study is to investigate the mutation spectrum and frequency of 54 cartaract-associated genes in 27 Chinese families with congenital cataracts. Variants in 54 cataract-associated genes were screened by targeted next-generation sequencing (NGS) and then validated by Sanger sequencing. We identified pathogenic variants in 62.96% (17/27) of families, and over 52.94% (9/17) of these variants were novel. Among them, three are splicing site mutations, four are nonsense mutations, seven are missense mutations, two are frame shift mutations and one is intronic mutation. This included identification of: complex ocular phenotypes due to two novel PAX6 mutations; progressive cortical cataract and lamellar cataract with lens subluxation due to two novel CRYGS mutations. Mutations were also found in rarely reported genes including CRYBA4, CRYBA2, BFSP1, VIM, HSF4, and EZR. Our study expands the mutation spectrum and frequency of genes responsible for congenital cataracts. Targeted next-generation sequencing in inherited congenital cataract patients provided significant diagnostic information.
Fabry disease is an X-linked disease caused by a defective lysosomal enzyme, alpha-galactosidase A, and characterized by skin lesions and multiorgan involvement, including kidney, heart, and the central nervous system. Currently more than 200 genotypes have been identified, including several aberrant splicing. However, most of the mutation analyses were performed using genomic sequencing only, and therefore some of the splicing mutations were misclassified as missense mutations. In order to predict the splicing event caused by each mutation, we conducted a literature search for all published mutations located near the splice sites, including exonic point mutations, and performed a splice-site score (SSS) analysis. The literature search identified 13 donor-site mutations, including four exonic mutations (S65T, D183S, K213N, and M267I), located at the end of exons 1, 3, 4, and 5, respectively, six acceptor-site mutations, and one new exon creation. All mutated splice sites, except for the one associated with the new exon creation, had a lower SSS than their respective natural sites. Cryptic or newly created sites were identified with SSS from 0.09 to 1.0. The predictions, based on SSS analysis, are in agreement with all six mutations with known cDNA sequence from the literature, including five mutations with exon skipping and one mutation with creation of a new acceptor site. For the S65T genotype, we performed reverse transcription-polymerase chain reaction (RT-PCR) analysis using RNA isolated from the whole-blood sample. We verified that a weak cryptic site (SSS = 0.09) 14 nucleotides downstream was activated and resulted in an insertion of 14 bp and a frameshift stop at codon 106. This change is more consistent with the clinical presentation of the patient, the classical Fabry disease, than the amino acid substitution (S65T), which does not affect the enzyme function. In conclusion, the SSS analysis is very useful for predicting splicing events and genotype/phenotype correlation in Fabry disease. As different mechanisms may be involved in pre-mRNA splicing, it is important to obtain cDNA sequencing for molecular diagnosis.
Autosomal dominant congenital cataracts (ADCC) are clinically and genetically heterogeneous diseases. The present study recruited two Chinese families with bilateral nuclear cataract or zonular pulverulent phenotype. Direct sequencing of candidate genes identified two novel missense mutations of Cx50, Cx50P59A (c.175C > G) and Cx50R76H (c.227G > A), both co-segregated well with all affected individuals. Bioinformatics analysis predicted deleterious for both mutations. Functional and cellular behaviors of wild type and mutant Cx50 examined by stably transfecting recombinant systems revealed similar protein expression levels. Protein distribution pattern by fluorescence microscopy showed that Cx50R76H localized at appositional membranes forming gap junctions with enormous cytoplasmic protein accumulation, whereas the Cx50P59A mutation was found inefficient at forming detectable plaques. Cell growth test by MTT assay showed that induction of Cx50P59A decreased cell viability. Our study constitutes the first report that the Cx50P59A and Cx50R76H mutations are associated with ADCC and expands the mutation spectrum of Cx50 in association with congenital cataracts. The genetic, cellular, and functional data suggest that the altered intercellular communication governed by mutated Cx50 proteins may act as the molecular mechanism underlying ADCC, which further confirms the role of Cx50 in the maintenance of human lens transparency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.