Introduction: Neuropilin-1 (NRP1) binds to many ligands and co-receptors and affects cell survival and migration, which is essential for tumor progression. However, there are still largely unknowns about how NRP1 affects the epithelial-mesenchymal transition (EMT)related malignant progression in gastric cancer. Methods: We used TCGA to analyze the expression of NRP1 in gastric cancer and its impact on patient survival. In in vitro experiments, transwell, wound healing and colony formation assays were used to evaluate the effects of NRP1 and ginsenoside Rg3 on the invasion, migration and proliferation of gastric cancer cells. In in vivo experiments, we evaluated the overexpression and knockdown of NRP1 and the effect of ginsenoside Rg3 on tumor growth. Results: We found that NRP1 is highly expressed in advanced gastric cancer and associated with poor prognosis. Knockdown of NRP1 expression can inhibit the proliferation and metastasis of gastric cancer cells. Mechanically. NRP1 interacts with fibronectin-1 (FN1) to promote the malignant progression of gastric cancer cells through ECM remodeling. In addition, we found that ginsenoside Rg3 can block the interaction of NRP1 and FN1 and inhibit the progression of gastric cancer. Conclusion: Our study suggested that the interaction of NRP1 and FN1 is crucial for the malignant progression of gastric cancer. This may provide a new perspective and potential treatment methods for the treatment of gastric cancer.
The assessment of Toll-like receptor (TLR) agonists as candidate adjuvants for induction of effective T helper type 1 (Th1) immunity continues to rely on the use of mice. However, the genetic variation among inbred mice may influence the efficacy of adjuvants and bias a study's conclusions. Here, we evaluated the differences in cellular and humoral responses of genetically non-identical mouse strains immunized with ovalbumin (OVA) plus alum, TLR-3, TLR-4, TLR-7/8 or TLR-9 agonists. We found that all the tested TLR agonists recruited dendritic cells (DCs) and natural killer (NK) cells significantly into the lymph nodes, promoted DC-NK cross-talk and enhanced the cellular responses in B6 strain. In contrast, TLR-3 and TLR-7/8 were the only two agonists that showed the cellular adjuvanticity in the BALB/c strain. Compared with other TLR agonists, TLR-3 and TLR-7/8 were demonstrated to be the most effective adjuvants to generate interferon (IFN)-γ-producing effector NK, CD4, and CD8 T cells in B6 and BALB/c strains, respectively. We also found that compared with alum, all adjuvants induced the recruitment of B cells and production of OVA-specific immunoglobulin (Ig)G2a more effectively in both strains. In addition, the B6 strain recruited more B cells, but surprisingly produced significantly lower amounts of OVA-specific IgG2a in response to all adjuvants. However, consistent with the frequency of IFN-γ-producing effector cells observed in individual strains following immunizations, we detected more OVA-specific IgG2a in serum of B6 and BALB/c strains in response to TLR-3 and TLR-7/8, respectively. Our data suggest that genetic background should be taken into consideration when evaluating the activities of TLR agonists for the development of prophylactic and therapeutic vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.