Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.
A single nanoplatform integrating laser-induced heat generation by gold nanoparticles and temperature sensing up to 2000 K via (Gd,Yb,Er)2 O3 nanorods is demonstrated, which presents considerable potential for nanoscale photonics and biomedicine. Blackbody emission is ascertained from the temperature increment with AuNP concentration, emission color coordinates as a function of the laser pump power, and Planck's law of blackbody radiation.
In the past decade, noninvasive luminescent thermometry has become popular due to the limitations of traditional contact thermometers to operate at scales below 100 μm, as required by current demands in disparate areas. Generally, the calibration procedure requires an independent measurement of the temperature to convert the thermometric parameter (usually an intensity ratio) to temperature. A new calibration procedure is necessary whenever the thermometer operates in a different medium. However, recording multiple calibrations is a time-consuming task, and not always possible to perform, e.g., in living cells and in electronic devices. Typically, a unique calibration relation is assumed to be valid, independent of the medium, which is a bottleneck of the secondary luminescent thermometers developed up to now. Here we report a straightforward method to predict the temperature calibration curve of any upconverting thermometer based on two thermally coupled electronic levels independently of the medium, demonstrating that these systems are intrinsically primary thermometers. SrF2:Yb/Er powder and water suspended nanoparticles were used as an illustrative example.
Luminescence thermal sensing and deep-tissue imaging using nanomaterials operating within the first biological window (ca. 700-980 nm) are of great interest, prompted by the ever-growing demands in the fields of nanotechnology and nanomedicine. Here, we show that (Gd1-xNdx)2O3 (x = 0.009, 0.024 and 0.049) nanorods exhibit one of the highest thermal sensitivity and temperature uncertainty reported so far (1.75 ± 0.04% K(-1) and 0.14 ± 0.05 K, respectively) for a nanothermometer operating in the first transparent near infrared window at temperatures in the physiological range. This sensitivity value is achieved using a common R928 photomultiplier tube that allows defining the thermometric parameter as the integrated intensity ratio between the (4)F5/2 → (4)I9/2 and (4)F3/2 → (4)I9/2 transitions (with an energy difference between the barycentres of the two transitions >1000 cm(-1)). Moreover, the measured sensitivity is one order of magnitude higher than the values reported so far for Nd(3+)-based nanothermometers enlarging, therefore, the potential of using Nd(3+) ions in luminescence thermal sensing and deep-tissue imaging.
Cubic Gd2O3:Eu3+ (0.30, 1.01, 2.78, and 4.60 mol %) nanorods with an average diameter of ca. 14 nm were synthesized at ambient pressure and mild temperature (70 °C), using a simple and cost-effective wet-chemical route. The emission-decay curves of the 5D1 and 5D0 levels, hereafter referred to as 5D1(C2) and 5D0(C2), were investigated. Although the decay time of the 5D0 level of the Eu3+ ions residing in the C2 site of cubic Gd2O3:Eu3+ nanostructures were previously reported, little is known about the rise time component in the 5D0 emission-decay curve and the energy-transfer pathways responsible for it. The 5D0(C2) rise time and the 5D1(C2) decay time exhibit similar and strong dependence on the Eu3+ concentration and temperature. The 5D1(C2) decay time matches well the rise time extracted from the rising component of the 5D0(C2) emission-decay curve. The decay time of the 5D0(C2) level (ranging from 1.4 to 2.1 ms, depending on the filing factor of the nanorods) is longer than that of the bulk counterpart mainly due to the reduction in the size of the nanorods, which introduces an effective-refractive index smaller than the refractive index of Gd2O3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.