BackgroundTuberculous lymphadenitis (TBLN) diagnosis remains a challenge in resource limited countries like Ethiopia. Most diagnostic centers in Ethiopia use smear microscopy, but it has low sensitivity in detecting tubercle bacilli in fine needle aspiration (FNA) specimens. FNA cytology (FNAC) is another widely applicable diagnostic option but it has low specificity for diagnosing TBLN. In 2014, WHO recommended Xpert MTB/RIF assay to be used in detecting TB from FNA specimen by considering the diagnostic limitations of microscopy and cytology. In Ethiopia, there is limited data on Xpert MTB/RIF performance in detecting TBLN from FNA. Therefore, this study aimed to evaluate the diagnostic performance of Xpert MTB/RIF assay and non-molecular methods (cytology, microscopy and culture) for the diagnosis of TBLN.MethodsA cross-sectional study was conducted on 152 presumptive TBLN patients at St. Paul’s Hospital Millennium Medical College (SPHMMC) from December 2015 to May 2016 in Addis Ababa, Ethiopia. FNA specimens were collected from each patient. Individual patient specimens were examined by microscopy (acid fast and auramine O staining), cytology, Xpert MTB/RIF and culture. Each specimen was directly inoculated and its sediment following decontamination procedure onto two duplicate Löwenstein-Jensen (LJ) media. Composite culture (specimen positive by direct or concentrated or both culturing methods) and composite method (positive by either one of the non-molecular methods) were taken as reference methods. The data was captured and analyzed using software packages SPSS version 20 (SPSS Inc, Chicago, Illinois, USA). Sensitivity, specificity, positive predictive value, and negative predictive value were calculated.ResultA total of 152 presumptive TBLN patients were enrolled in this study. Of these, 105(69%), 68(44.7%), 64(42%), 48(32%) and 33(22%) were positive for M. tuberculosis using composite method (positive by either one of the non-molecular method), composite culture, direct, and concentrated culture, respectively. TB positivity rate was 67.8%, 49.3%, 24.3%, and 14.5% using cytology, Xpert MTB/RIF, Auramine O (FM) microscopy, and Ziehl Nelson (ZN) microscopy, respectively. Using composite culture as reference, the sensitivity and specificity of Xpert MTB/RIF was 78% (95% CI: 73.7% to 82.3%) and 74% (95%CI: 69.4% to 78.6%), respectively. However, the sensitivity of Xpert MTB/RF improved from 78% to 92% using composite method as a reference. The high positivity rate observed in purulent (70%) followed by caseous (66.7%) type of aspirates by Xpert MTB/RIF.ConclusionXpert MTB/RIF assay has both considerable sensitivity and specificity; it may be employed for better diagnosis, management and treatment of presumptive TBLN patients.
Background Molecular characterization of Mycobacterium tuberculosis (MTB) is important to understand the pathogenesis, diagnosis, treatment, and prevention of tuberculosis (TB). However, there is limited information on molecular characteristics and drug-resistant patterns of MTB in patients with extra-pulmonary tuberculosis (EPTB) in Ethiopia. Thus, this study aimed to determine the molecular characteristics and drug resistance patterns of MTB in patients with EPTB in Addis Ababa, Ethiopia. Methods This study was conducted on frozen stored isolates of EPTB survey conducted in Addis Ababa, Ethiopia. A drug susceptibility test was performed using BACTEC-MGIT 960. Species and strain identification were performed using the Geno-Type MTBC and spoligotyping technique, respectively. Data were entered into the MIRU-VNTRplus database to assess the spoligotype patterns of MTB. Analysis was performed using SPSS version 23, and participants’ characteristics were presented by numbers and proportions. Results Of 151 MTB isolates, 29 (19.2%) were resistant to at least one drug. The highest proportion of isolates was resistant to Isoniazid (14.6%) and Pyrazinamide (14.6%). Nine percent of isolates had multidrug-resistant TB (MDR-TB), and 21.4% of them had pre-extensively drug-resistant TB (pre-XDR-TB). Among the 151 MTB isolates characterized by spoligotyping, 142 (94.6%) had known patterns, while 9 (6.0%) isolates were not matched with the MIRU-VNTRplus spoligotype database. Of the isolates which had known patterns, 2% was M.bovis while 98% M. tuberculosis. Forty-one different spoligotype patterns were identified. The most frequently identified SpolDB4 (SIT) wereSIT149 (21.2%), SIT53 (14.6%) and SIT26 (9.6%). The predominant genotypes identified were T (53.6%), Central Asia Strain (19.2%) and Haarlem (9.9%). Conclusion The present study showed a high proportion of MDR-TB and pre-XDR-TB among EPTB patients. The strains were mostly grouped into SIT149, SIT53, and SIT26. The T family lineage was the most prevalent genotype. MDR-TB and pre-XDR-TB prevention is required to combat these strains in EPTB. A large scale study is required to describe the molecular characteristics and drug resistance patterns of MTB isolates in EPTB patients.
Introduction: Molecular tests allow rapid detection of Mycobacterium tuberculosis and drug resistance in a few days. Identifying the mutations in genes associated with drug resistance may contribute to the development of appropriate interventions to improve tuberculosis control. So far, there is little information in Ethiopia about the diagnostic performance of line probe assay (LPA) and the M. tuberculosis common gene mutations associated with drug resistance in extrapulmonary tuberculosis. Thus, this study aimed to assess the frequency of drug resistance-associated mutations in patients with extrapulmonary tuberculosis (EPTB) and to compare the agreement and determine the utility of the genotypic in the detection of drug resistance in Addis Ababa, Ethiopia. Methods: A cross-sectional study was conducted on stored M. tuberculosis isolates. The genotypic and phenotypic drug susceptibility tests were performed using LPA and BACTEC-MGIT-960, respectively. The common mutations were noted, and the agreement and the utility of the LPA were determined using the BACTEC-MGIT-960 as a gold standard. Results: Of the 151 isolates, the sensitivity and specificity of MTBDR plus in detecting isoniazid resistance were 90.9% and 100%, respectively. While for rifampicin, it was 100% and 99.3% for sensitivity and specificity, respectively. The katG S315Tl was the most common mutation observed in 85.7% of the isoniazid-resistant isolates. In the case of rifampicin, the most common mutation (61.9%) was observed at position rpoB S531L. Mutations in the gyrA promoter region were strongly associated with Levofloxacin and Moxifloxacin resistance. Conclusion: Line probe assay has high test performance in detecting resistance to anti-TB drugs in EPTB isolates. The MTBDR plus test was slightly less sensitive for the detection of isoniazid resistance as compared to the detection of rifampicin. The most prevalent mutations associated with isoniazid and rifampicin resistance were observed at katG S315Tl and rpoB S531L respectively. Besides, all the fluoroquinolone-resistant cases were associated with gyrA gene. Finally, a validation study with DNA sequencing is recommended.
Background. In Ethiopia, tuberculosis (TB) is one of the most common causes of illness and death. However, there is limited information available on lineages associated with drug resistance among extrapulmonary tuberculosis patients in Ethiopia. In this study, researchers looked into Mycobacterium tuberculosis lineages linked to drug resistance in patients with extrapulmonary tuberculosis in Addis Ababa, Ethiopia. Methods. On 151 Mycobacterium tuberculosis isolates, a cross-sectional analysis was performed. Spoligotyping was used to characterize mycobacterial lineages, while a phenotypic drug susceptibility test was performed to determine the drug resistance pattern. Data were analyzed using SPSS version 23. Results. Among 151 Mycobacterium tuberculosis complex (MTBC) genotyped isolates, four lineages (L1–L4), and Mycobacterium bovis were identified. The predominantly identified lineage was Euro-American (73.5%) followed by East-African-Indian (19.2%). Any drug resistance (RR) and multidrug-resistant (MDR) tuberculosis was identified among 16.2% and 7.2% of the Euro-American lineage, respectively, while it was 30.8% and 15.4% among the East-African-Indian lineages. Among all three preextensively drug-resistance (pre-XDR) cases identified, two isolates belong to T3-ETH, and the other one strain was not defined by the database. There was no statistically significant association between any type of drug resistance and either lineage or sublineages of Mycobacterium tuberculosis. Conclusion. A higher proportion of any type of drug resistance and MDR was detected among the East-African-Indian lineage compared to others. However, there was no statistically significant association between any type of drug resistance and either lineages or sublineages. Thus, the authors recommend a large-scale study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.