In this paper, we introduce and study an iterative algorithm for finding a common element of the set of fixed points of a Lipschitz hemicontractive-type multi-valued mapping and the set of solutions of a generalized equilibrium problem in the framework of Hilbert spaces. Our results improve and extend most of the results that have been proved previously by many authors in this research area.
In this paper, we introduce and study an iterative process for finding a common point of the fixed point set of a Lipschitz hemicontractive-type multi-valued mapping and the solution set of a variational inequality problem for a monotone mapping. Our results improve and extend most of the results that have been proved for this class of nonlinear mappings.
Halpern iterative algorithm is one of the most cited in the literature of approximation of fixed points of nonexpansive mappings. Different authors modified this iterative algorithm in Banach spaces to approximate fixed points of nonexpansive mappings. One of which is Yao et al. [16] modification of Halpern iterative algorithm for nonexpansive mappings in uniformly smooth Banach spaces. Unfortunately, some deficiencies are found in the Yao et al. [16] control conditions imposed on the modified iteration to obtain strong convergence. In this paper, counterexamples are constructed to prove that the strong convergence conditions of Yao et al. [16] are not sufficient and it is also proved that with some additional control conditions on the parameters strong convergence of the iteration is obtained.
In this paper, we introduce a commutative mappings satisfying the class of generalized nonexpansive mappings which is wider than the class of mappings satisfying the condition (C), so called Condition B γ,µ . The results obtained in this paper extend and generalized nonexpansive mappings and other results in this direction. Different properties and some fixed point results for the mappings are obtained here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.