African swine fever virus (ASFV), the causative pathogen of the recent ASF epidemic, is a highly contagious double-stranded DNA virus. Its genome is in the range of 170~193 kbp and encodes 68 structural proteins and over 100 non-structural proteins. Its high pathogenicity strains cause nearly 100% mortality in swine. Consisting of four layers of protein shells and an inner genome, its structure is obviously more complicated than many other viruses, and its multi-layered structures play different kinds of roles in ASFV replication and survival. Each layer possesses many proteins, but very few of the proteins have been investigated at a structural level. Here, we concluded all the ASFV proteins whose structures were unveiled, and explained their functions from the view of structures. Those structures include ASFV AP endonuclease, dUTPases (E165R), pS273R protease, core shell proteins p15 and p35, non-structural proteins pA151R, pNP868R (RNA guanylyltransferase), major capsid protein p72 (gene B646L), Bcl-2-like protein A179L, histone-like protein pA104R, sulfhydryl oxidase pB119L, polymerase X and ligase. These novel structural features, diverse functions, and complex molecular mechanisms promote ASFV to escape the host immune system easily and make this large virus difficult to control.
Human parainfluenza virus 3 (HPIV3) belongs to the
Paramyxoviridae
, causing annual worldwide epidemics of respiratory diseases, especially in newborns and infants. The core components consist of just three viral proteins: nucleoprotein (N), phosphoprotein (P), and RNA polymerase (L), playing essential roles in replication and transcription of HPIV3 as well as other paramyxoviruses. Viral genome encapsidated by N is as a template and recognized by RNA-dependent RNA polymerase complex composed of L and P. The offspring RNA also needs to assemble with N to form nucleocapsids. The N is one of the most abundant viral proteins in infected cells and chaperoned in the RNA-free form (N
0
) by P before encapsidation. In this study, we presented the structure of unassembled HPIV3 N
0
in complex with the N-terminal portion of the P, revealing the molecular details of the N
0
and the conserved N
0
-P interaction. Combined with biological experiments, we showed that the P binds to the C-terminal domain of N
0
mainly by hydrophobic interaction and maintains the unassembled conformation of N by interfering with the formation of N-RNA oligomers, which might be a target for drug development. Based on the complex structure, we developed a method to obtain the monomeric N
0
. Furthermore, we designed a P-derived fusion peptide with 10-times higher affinity, which hijacked the N and interfered with the binding of the N to RNA significantly. Finally, we proposed a model of conformational transition of N from the unassembled state to the assembled state, which helped to further understand viral replication.
IMPORTANCE
Human parainfluenza virus 3 causes annual epidemics of respiratory diseases, especially in newborns and infants. For the replication of HPIV3 and other paramyxoviruses, only three viral proteins are required: phosphoprotein (P), RNA polymerase (L), and nucleoprotein (N). Here, we reported the crystal structure of the complex of N and its chaperone P. We described in details how P acts as a chaperone to maintain the unassembled conformation of N. Our analysis indicated that the interaction between P and N is conserved and mediated by hydrophobicity, which can be used as a target for drug development. We obtained a high-affinity P-derived peptide inhibitor, specifically targeted N and greatly interfered with the binding of the N to RNA, thereby inhibiting viral encapsidation and replication. In summary, our results provide new insights into the paramyxovirus genome replication and nucleocapsid assembly, and lay the basis for drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.