In this study, acrylamide and [2-(acryloyloxy)ethyl] trimethylammonium chloride were grafted onto CS by UV initiation to obtain an environmentally friendly graft copolymer, CS-g-poly(acrylamide-acryloyloxyethyl) trimethylammonium chloride (CS-g-PAD). Poly(acrylamide-acryloyloxyethyl) trimethylammonium chloride was named as PAD. Nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and thermal gravimetric analysis (TG-DSC) were used to characterize CS-g-PAD. Results confirmed the synthesis of CS-g-PAD. SEM results showed that CS-g-PAD exhibited a porous structure with numerous 2–6 μm micropores. The enhanced CaCl2-aided flocculation tests of wastewater contaminated by zinc phosphate coating indicated that CS-g-PAD had better flocculation performance than PAD and the commercially available cationic polyacrylamide (CPAM). The removal rates of zinc concentration, total phosphorus concentration, and chemical oxygen demand were 99.3, 98.8, and 72.5%, respectively, at 6 mg·L–1 CS-g-PAD and pH 10. The precipitated flocs were mainly in crystalline form.
Cationic polyacrylamides (CPAMs) synthesized by thermal, ultrasonic, microwave, and UV initiation were characterized through magnetic resonance hydrogen spectroscopy (1H NMR), Fourier transform infrared spectra, scanning electron microscopy, and thermal gravimetric analysis. The CPAMs for flocculation and dewatering of alum sludge produced through drinking water treatment were evaluated based on the residual turbidity of the supernatant, dry solid content, mean volume diameter and floc size distribution, fractal dimension of the flocs, and zeta potential as a function of flocculant dosage. Comparisons of the characteristics and performance of CPAMs synthesized through different initiation methods were systematically conducted. Flocculation and dewatering test results demonstrated that CPAMs synthesized through microwave and UV initiation had better flocculation performance and dewatering capability than those synthesized through thermal and ultrasonic initiation. All four CPAMs exhibited a similar final floc size distribution but different mean volume diameters and floc structures. The fractal dimension of the flocs and the zeta potential were in the following order: CPAM3 (microwave initiation) > CPAM4 (UV initiation) > CPAM1 (thermal initiation) > CPAM2 (ultrasonic initiation). Discussions on fractal dimension and zeta potential indicated that the electrostatic patches model and adsorption/bridging effect mechanisms played the main role in the formation of sludge flocs. Lastly, microwave and UV initiation were found to be alternative and recommendable initiation methods for the synthesis of CPAMs with improved flocculation performance and sludge dewatering capability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44071.
Chitosan (CS)-g-polyacrylamide (PAM) is a highly efficient and environmentally friendly flocculant, which was synthesized through plasma-induced graft copolymerization of CS and acrylamide (AM). The effects of monomer concentration, AM:CS ratio, discharge power, discharge time, post-polymerization temperature, and post-polymerization time on the intrinsic viscosity, grafting ratio, and grafting efficiency of CS-g-PAM were investigated. The optimum conditions of graft copolymerization were as follows: 20% monomer concentration, 7:3 AM:CS ratio, 40 W discharge power, 90 s discharge time, 50°C post-polymerization temperature, and 24 h post-polymerization time. The structural characteristics of CS-g-PAM were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. CS-g-PAM exhibited better flocculation efficiency than the commercially available PAM in both diatomite-simulated wastewater and low-turbidity algal water. The optimal turbidity removal efficiency for the diatomite-simulated wastewater was 99.9%, which was obtained with 6 mg L of CS-g-PAM at pH 11.0 and 250 s of velocity gradient. In low-turbidity algal water, the optimal removal efficiencies for chlorophyll-a, turbidity, and COD were 93.6%, 94.5%, and 98.2%, respectively.
Although the cost-reference particle filter (CRPF) has a good advantage in solving the state estimation problem with unknown noise statistical characteristics, its estimation accuracy is still affected by the lack of particle diversity and sensitivity to the particles’ initial value. In order to solve these problems of the CRPF, this paper proposed an intelligent cost-reference particle filter algorithm based on multi-population cooperation. A multi-population cooperative resampling strategy based on ring structure was designed. The particles were divided into multiple independent populations upon initialization, and each population generated particles with a different initial distribution. The particles in each population were divided into three different particle sets with high, medium and low weights by the golden section ratio according to the weight. The particle sets with high and medium weights were retained. Then, a cooperative strategy based on Gaussian mutation was designed to resample the low-weight particle set of each population. The high-weight particles of the previous population in the ring structure were randomly selected for Gaussian mutation to replace the low-weight particles in the current population. The low-weight particles of all populations were resampled in turn. The simulation results show that the intelligent CRPF based on multi-population cooperation proposed in this paper can reduce the sensitivity of the CRPF to the particles’ initial value and improve the particle diversity in resampling. Compared with the general CRPF and intelligent CRPF with adaptive MH resampling (MH-CRPF), the RMSE and MAE of the proposed method are lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.