ObjectiveMuscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity.MethodsTamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests.Resultsgys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity.ConclusionsThus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity.In briefThis study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity.
a b s t r a c tAlzheimer's disease (AD) is an extremely prevalent cause of dementia. It is characterized by progressive memory loss, confusion, and other behavioral and physiological problems. The amyloid-b (Ab) protein is thought to be involved in the pathogenesis of AD, and there is evidence that Ab may act through the p75 neurotrophin receptor (p75) to mediate its pathogenic effects. This raises the possibility that reducing levels of p75 could be a treatment for AD by preventing the effects of Ab. In this study, we have crossed the transgenic AD model mice, Tg2576, with p75 À/À mice to generate Tg2576/p75 þ/À mice with reduced levels of p75. These mice are rescued from the deficits in learning and memory and hippocampal function which were found in the Tg2576 mice. These findings suggest that reduction of p75 can ameliorate some of the primary symptoms of AD.Crown
Pseudobulbar affect is a disorder of emotional expression commonly observed in amyotrophic lateral sclerosis (ALS), presenting as episodes of involuntary laughter, or crying. The objective of the current study was to determine the association between frequency of pathological laughter and crying (PLC) episodes with clinical features, cognitive impairment, and brainstem pathology. Thirty-five sporadic ALS patients underwent neuropsychological assessment, with a subset also undergoing brain imaging. The Center for Neurological Study Lability Scale (CNS-LS) was used to screen for presence and severity of pseudobulbar affect (CNS-LS ≥ 13) and frequency of PLC episodes. Presence of pseudobulbar affect was significantly higher in bulbar onset ALS (p = 0.02). Frequency of PLC episodes was differentially associated with cognitive performance and brainstem integrity. Notably pathological laughter frequency, but not crying, showed a significant positive association with executive dysfunction on the Trail Making Test B-A (R2 = 0.14, p = 0.04). Similarly, only pathological laughter frequency demonstrated a significant negative correlation with gray matter volume of the brainstem (R2 = 0.46, p < 0.01), and mean fractional anisotropy of the superior cerebellar peduncles (left: R2 = 0.44, p < 0.01; right: R2 = 0.44, p < 0.01). Hierarchical regression indicated brainstem imaging in combination with site of symptom onset explained 73% of the variance in pathological laughter frequency in ALS. The current findings suggest emotional lability is underpinned by degeneration across distinct neural circuits, with brainstem integrity critical in the emergence of pathological laughter.
This study seeks to determine whether knockdown of basal forebrain p75 neurotrophin receptor (p75(NTR) ) expression elicits increased hippocampal choline acetyltransferase (ChAT) activity in mature animals. Antisense (AS) oligonucleotides (oligos) targeting p75(NTR) were infused into the medial septal area of mature rats continuously for 4 weeks. In all rats, the cannula outlet was placed equidistant between the left and the right sides of the vertical diagonal band of Broca. We tested phosphorothioate (PS), morpholino (Mo), and gapmer (mixed PS/RNA) oligos. Gapmer AS infusions of 7.5 and 22 μg/day decreased septal p75(NTR) mRNA by 34% and 48%, respectively. The same infusions increased hippocampal ChAT activity by 41% and 55%. Increased hippocampal ChAT activity correlated strongly with septal p75(NTR) downregulation in individual rats. Infusions of PS and Mo AS oligos did not downregulate p75(NTR) mRNA or stimulate ChAT activity. These results demonstrate that p75(NTR) can dynamically regulate hippocampal ChAT activity in the mature CNS. They also reveal the different efficacies of three diverse AS oligo chemistries when infused intracerebrally. Among the three types, gapmer oligos worked best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.