Qufeng Zhitong capsule (QZC), a Chinese patent medicine officially approved in China for the treatment of rheumatoid arthritis (RA) and other diseases, possesses the primary effects of dispelling wind, relieving pain, and promoting blood circulation, whose clinical applications have been confined owing to the incomplete elucidation of its chemical compositions and the underlying molecular mechanism for the treatment of RA. In this study, 61 compounds including 16 phenylpropanoids, 15 organic acids, 13 alkaloids, seven flavonoids, six iridoids, one saccharide, two aldehydes, and one saponin in QZC were simultaneously identified and traced to their herbal origins by ultra-high performance liquid chromatography tandem Q-Exactive Orbitrap high-resolution mass spectrometry (UHPLC/Q-Orbitrap-MS), where 31 of them were unambiguously identified by reference compounds, and the other 30 were tentatively characterized. Besides, all these compounds were proven to have potential pharmacological activity in the treatment of RA based on network pharmacology analysis. In conclusion, this study first investigated the chemical composition and potential pharmacological effects of the main chemical compounds in QZC, which will contribute to the revelation of bioactive compounds in QZC and provide evidence for clinical application.
Qufeng Zhitong capsule (QZC) is a well-known Chinese patent medicine that has been widely applied for the clinical treatment of rheumatoid arthritis and other inflammatory diseases. To date, its material basis is still unclear, which has greatly limited its clinical application. In this study, by taking advantage of ultra-high-performance liquid chromatography tandem Q-Exactive Orbitrap high-resolution mass spectrometry, 16 chemical components such as gallic acid, protocatechuic acid, and neochlorogenic acid in QZC were characterized and unambiguously identified based on comparison with the corresponding reference standards. In addition, the correlation between the focused components and their corresponding raw herbs from QZC prescription was investigated. For the first time, the relationship between the components mentioned above and their anti-inflammatory activity was explored via network pharmacology analysis, and a visualized network of “medicinal materials-QZC-compounds-targets-pathways” was established. Based on the brief prediction results of network pharmacological analysis, ultra-performance liquid chromatography coupled with photodiode array detector method was validated in terms of linearity, limit of detection, limit of quantification, precision, repeatability, stability, and recovery test and was successfully employed to determine 16 compounds in 28 batches of QZCs, which confirmed the feasibility and reliability of the established method for the quantitative analysis of 16 compounds in QZC. Considering the content and bioactivity of the tested components, four compounds were recommended as candidate indicators for quality evaluation ultimately. The potential value of this study could not only support a quality evaluation of QZC but also provide a theoretical basis for further in-depth research of QZC in clinical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.