Hypertension is a major threat to human health. Eucommia ulmoides Oliv. (EU) is a small tree and EU extract is widely used to improve hypertension in East Asia. However, its major constituents have poor absorption and stay in the gut for a long time. The role of the gut microbiota in the anti-hypertensive effects of EU is unclear. Here, we examined the anti-hypertensive effects of EU in high-salt diet and N(omega)-nitro-L-arginine methyl ester (L-NAME) induced mice. After receiving EU for 6 weeks, the blood pressure was significantly reduced and the kidney injury was improved. Additionally, EU restored the levels of inflammatory cytokines, such as serum interleukin (IL)-6 and IL-17A, and renal IL-17A. The diversity and composition of the gut microbiota were influenced by administration of EU; 40 significantly upregulated and 107 significantly downregulated amplicon sequence variants (ASVs) were identified after administration of EU. ASV403 (Parabacteroides) was selected as a potential anti-hypertensive ASV. Its closest strain XGB65 was isolated. Furthermore, animal studies confirmed that Parabacteroides strain XGB65 exerted anti-hypertensive effects, possibly by reducing levels of inflammatory cytokines, such as renal IL-17A. Our study is the first to report that EU reduces blood pressure by regulating the gut microbiota, and it enriches the Parabacteroides strain, which exerts anti-hypertensive effects. These findings provide directions for developing novel anti-hypertensive treatments by combining probiotics and prebiotics.
Isolating relevant microorganisms is still a substantial challenge that limits the use of bacteria in the maintenance of human health. To confirm which media and which bacterial colony densities can enrich certain kinds of bacteria, we selected eight common media and used them to enrich the gut microorganisms on agar plates. Then, we calculated the numbers of bacterial colonies and collected the bacterial culture mixtures from each kind of medium. Using the Illumina HiSeq platform, we analyzed the composition and diversity of the culture-enriched gut bacterial community. Our data suggested that medium supplemented with blood could increase the diversity of the bacterial community. In addition, beef powder and peptone could significantly change the culture-enriched bacterial community. A moderate density (100–150 colony-forming units per plate) was optimal for obtaining the highest diversity on the agar. Similarly, membrane transport was significantly enriched in the moderate-density group, which indicated a more active metabolism in this density range. Overall, these results reveal the optimal culture conditions, including the densities of colonies and nutritional components for various gut bacteria, that provide a novel strategy for isolating bacteria in a way that is targeted and avoids blinded and repetitive work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.