As defense technology develops, it is essential to study the pursuit–evasion (PE) game problem in hypersonic vehicles, especially in the situation where a head-on scenario is created. Under a head-on situation, the hypersonic vehicle’s speed advantage is offset. This paper, therefore, establishes the scenario and model for the two sides of attack and defense, using the twin delayed deep deterministic (TD3) gradient strategy, which has a faster convergence speed and reduces over-estimation. In view of the flight state–action value function, the decision framework for escape control based on the actor–critic method is constructed, and the solution method for a deep reinforcement learning model based on the TD3 gradient network is presented. Simulation results show that the proposed strategy enables the hypersonic vehicle to evade successfully, even under an adverse head-on scene. Moreover, the programmed maneuver strategy of the hypersonic vehicle is improved, transforming it into an intelligent maneuver strategy.
Given the limitations of escape maneuvers and decoy deployment of combat aircraft under missile attacks; active defense dramatically improves the survival chances by launching active defense missiles to intercept incoming missiles. Different from previous work, this paper implemented impact angle constraints on the defense missile to achieve a better defense effect. The low-cost active defense missile with limited maneuverability is considered to cooperate with the aircraft through three mechanisms, namely two-way cooperation without any predetermined strategy, one-way cooperation with the defense missile employing a linear guidance strategy, and one-way cooperation with independent evasion maneuver for the target. Three optimal cooperative guidance strategies with impact angle constraints were investigated. Finally, a nonlinear two-dimensional model for agents with first-order autopilot dynamics was simulated to verify the performance of the proposed strategies. The simulation results indicated that the cooperative mechanism directly affects the available range of impact angles, and the constraints of a big impact angle can be realized by introducing the nonlinear model parameters and considering the angle variation between the velocity vector and the initial line-of-sight. Furthermore, the two-way cooperative mechanism achieves the best performance and more flexible solutions to accommodate different vehicle maximum overload limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.