Decreased phagocytotic ability of macrophages has been reported to be associated with the severity of endometriosis, although the underlying mechanism remains uncharacterized. Expression and secretion of matrix metalloproteinase (MMP)-9 by macrophages is a means to degrade the extracellular matrix of cells that are designated for phagocytosis. Here, we describe the regulation of MMP-9 expression and activity in peritoneal macrophages of women with endometriosis. Results demonstrated that peritoneal macrophages isolated from women with endometriosis have decreased levels of protein and enzyme activity of MMP-9. Treatment of macrophages with peritoneal fluid obtained from patients with severe endometriosis inhibited MMP-9 expression and gelatinase activity. Further investigation identified prostaglandin (PG) E 2 as the major factor in the peritoneal fluid that inhibited MMP-9 activity. The inhibitory effect of PGE 2 was mediated via the EP2/EP4-dependent PKA pathway. Furthermore, expression of tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloproteinase-2, and RECK in macrophages was not affected by treatment with PGE 2 , indicating the effect of PGE 2 on suppressing MMP-9 activity was not mediated by up-regulation of its inhibitor. Our results suggest that decreased phagocytotic capability of peritoneal macrophage in patients with endometriosis may be caused by PGE 2 -mediated decreases in MMP-9 expression. Endometriosis is a common gynecological disorder with a complex, multifactorial etiology that causes chronic pelvic pain, dysmenorrhea, and even infertility. The prevalence of this disease is ϳ10 to 15% among women of reproductive age. The underlying pathophysiological mechanism is still enigmatic. Although retrograde menstruation has been suggested to be the crucial constituent in the development of endometriosis, 1 factors allowing the implantation and propagation of endometriotic lesions are primarily unclear. Aberrant production of steroids by ectopic endometriotic lesions and alteration/ dysfunction of the immune system may lead to the development of endometriosis.2-5 During the development of endometriosis, immune cells are recruited into the peritoneal cavity. Among these immune cells, macrophages are the dominant cell type in the peritoneal cavity and are involved in phagocytosis and inflammation, especially in cleaning the retrograded endometrial debris.6,7 Peritoneal macrophages isolated from patients with endometriosis were found to have phenotypic and functional alterations leading to poor phagocytotic capacity, which is highly associated with severity of endometriosis. 4,8 Nevertheless, the mechanism of suppressed phagocytotic capability of macrophages in endometriosis is poorly understood.Matrix metalloproteinases (MMPs), also called matrixins, are proteinases that participate in extracellular matrix degradation.9 Based on substrate specificity, sequence similarity, and domain organization, vertebrate MMPs can be divided into six groups such as collagenases, gelatinases, stromel...
Alzheimer’s disease (AD) is multifactorial with unclear etiopathology. Due to the complexity of AD, many attempted single therapy treatments, like Aβ immunization, have generally failed. Therefore, there is a need for drugs with multiple benefits. Naturally occurring phytochemicals with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties could be a possible way out. In this study, the effect of Moringa oleifera (MO), a naturally occurring plant with high antioxidative, anti-inflammatory, and neuroprotective effects, was evaluated on hyperhomocysteinemia (HHcy) induced AD-like pathology in rats. Homocysteine (Hcy) injection for 14 days was used to induce AD-like pathology. Simultaneous MO extract gavage followed the injection as a preventive treatment or, after injection completion, MO gavage was performed for another 14 days as a curative treatment. MO was found to not only prevent but also rescue the oxidative stress and cognitive impairments induced by Hcy treatment. Moreover, MO recovered the decreased synaptic proteins PSD93, PSD95, Synapsin 1 and Synaptophysin, and improved neurodegeneration. Interestingly, MO decreased the Hyc-induced tau hyperphosphorylation at different sites including S-199, T-231, S-396, and S-404, and at the same time decreased Aβ production through downregulation of BACE1. These effects in HHcy rats were accompanied by a decrease in calpain activity under MO treatment, supporting that calpain activation might be involved in AD pathogenesis in HHcy rats. Taken together, our data, for the first time, provided evidence that MO alleviates tau hyperphosphorylation and Aβ pathology in a HHcy AD rat model. This and previous other studies support MO as a good candidate for, and could provide new insights into, the treatment of AD and other tauopathies.
BackgroundA vaccine against coronavirus disease 2019 (COVID-19) with highly effective protection is urgently needed. The anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody response and duration after vaccination are crucial predictive indicators.ObjectivesTo evaluate the response and duration for 5 subsets of anti-SARS-CoV-2 antibodies after vaccination and their predictive value for protection.MethodsWe determined the response and duration for 5 subsets of anti-SARS-CoV-2 antibodies (neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA) in 61 volunteers within 160 days after the CoronaVac vaccine. A logistic regression model was used to determine the predictors of the persistence of neutralizing antibody persistence.ResultsThe seropositivity rates of neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA were only 4.92%, 27.87%, 21.31%, 3.28% and 0.00%, respectively, at the end of the first dose (28 days). After the second dose, the seropositivity rates reached peaks of 95.08%, 100.00%, 100.00%, 59.02% and 31.15% in two weeks (42 days). Their decay was obvious and the seropositivity rate remained at 19.67%, 54.10%, 50.82%, 3.28% and 0.00% on day 160, respectively. The level of neutralizing antibody reached a peak of 149.40 (101.00–244.60) IU/mL two weeks after the second dose (42 days) and dropped to 14.23 (7.62–30.73) IU/mL at 160 days, with a half-life of 35.61(95% CI, 32.68 to 39.12) days. Younger participants (≤31 years) had 6.179 times more persistent neutralizing antibodies than older participants (>31 years) (P<0.05). Participants with anti-Spike IgA seropositivity had 4.314 times greater persistence of neutralizing antibodies than participants without anti-Spike IgA seroconversion (P<0.05).ConclusionsAntibody response for the CoronaVac vaccine was intense and comprehensive with 95.08% neutralizing seropositivity rate, while decay was also obvious after 160 days. Therefore, booster doses should be considered in the vaccine strategies.
Casein kinase 2 (CK2) is highly activated in Alzheimer disease (AD) and is associated with neurofibrillary tangles formation. Phosphorylated SET, a potent PP2A inhibitor, mediates tau hyperphosphorylation in AD. However, whether CK2 phosphorylates SET and regulates tau pathological phosphorylation in AD remains unclear. Here, we show that CK2 phosphorylating SET at Ser9 induced tau hyperphosphorylation in AD. We found that either Aβ treatment or tau overexpression stimulated CK2 activation leading to SET Ser9 hyperphosphorylation in neurons and animal models, while inhibition of CK2 by TBB abolished this event. Overexpression of CK2 in mouse hippocampus via virus injection induced cognitive deficit associated with SET Ser9 hyperphosphorylation. Injection of SET Ser9 phosphorylation mimetic mutant induced tau pathology and behavior impairments. Conversely co-injection of non-phosphorylated SET S9A with CK2 abolished the CK2 overexpression-induced AD pathology and cognitive deficit. Together, our data demonstrate that CK2 phosphorylates SET at Ser9 leading to SET cytoplasmic translocation and inhibition of PP2A resulting in tau pathology and cognitive impairments.
BackgroundDue to anti-SARS-CoV-2 antibody decay and SARS-CoV-2 variants, vaccine booster doses are a constant concern. It was focused on whether the third dose can quickly evoke and activate immunity and produce a sufficient and durable immune protection.ObjectivesTo evaluate the responses and durations of five subsets of anti-SARS-CoV-2 antibodies and their predictive values for protection after the administration of a three-dose inactivated SARS-CoV-2 vaccines regimens.MethodsA prospective cohort study of five subsets of anti-SARS-CoV-2 antibodies (neutralizing antibody, anti-RBD total antibody, anti-Spike IgG, anti-Spike IgM, and anti-Spike IgA) was carried out to evaluate the efficacies and immune characteristics of a three-dose inactivated SARS-CoV-2 vaccines regimen in 32 volunteers. The dynamic response and immune decay were longitudinally profiled at 18 serial time points over 368 days.ResultsThe neutralizing antibody, anti-RBD total antibody, anti-Spike IgG and anti-Spike IgA levels rapidly increased to 773.60 (380.90-1273.00) IU/mL, 639.30 (399.60-878.60) AU/mL, 34.48 (16.83-44.68) S/CO and 0.91 (0.35-1.14) S/CO, respectively, after the administration of the third dose. Compared to the peak value after the second dose, these values were increased by 4.22-fold, 3.71-fold, 1.01-fold and 0.92-fold. On the other hand, the half-lives of the neutralizing antibody, anti-RBD total antibody, and anti-Spike IgG were 56.26 (95% CI, 46.81 to 70.49) days, 66.37 (95% CI, 54.90 to 83.88) days, and 82.91 (95% CI, 63.65 to 118.89) days, respectively. Compared to the half-lives after the second dose, these values were increased by 1.71-fold, 2.00-fold, and 2.93-fold, respectively. Nevertheless, the positive conversion rate of anti-Spike IgM was decreased to 9.38% (3/32), which was much lower than that after the second dose (65.63% (21/32)).ConclusionsCompared to the second dose, the third dose dramatically increased the antibody levels and decay times. However, the half-life of neutralizing antibody remained unsatisfactory. Due to decay, a fourth dose, and even annual revaccination, might be considered in the SARS-CoV-2 vaccination management strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.