The freshwater scarcity and increasing energy demand are two challenging global issues. Herein, we propose a new route for desalination, self-sustained visible-light-driven electrochemical redox desalination. We propose a novel device architecture involving internal integration of a quasi-solid-state dye-sensitized solar cell and continuous redox-flow desalination units with a bifunctional platinized-graphite-paper electrode. Both the solar cell and redox-flow desalination units are integrated using the bifunctional electrode with one side facing the solar cell operating as a positive electrode and the other side facing the redox-flow desalination unit operating as a negative electrode. The solar cell contains a gel-based tri-iodide/iodide redox couple sandwiched between an N719 dye-modified photoanode and cathode. In contrast, the redox-flow desalination consists of re-circulating ferro/ferricyanide redox couple sandwiched between the anode and cathode with two salt streams located between these electrodes. The performances of bifunctional electrodes in both redox couples were thoroughly investigated by electrochemical characterization. The brackish feed can be continuously desalted to the freshwater level by utilizing visible light illumination. As a device, this architecture combines energy conversion and water desalination. This concept bypasses the need for electrical energy consumption for desalination, which provides a novel structural design using photodesalination to facilitate the development of self-sustained solar desalination technologies.
A photo-redox catalysis desalination cell demonstrated the dual functions of desalination and photo-electricity energy conversion.
Efficiently storing electricity generated from renewable resources and desalinating brackish water are both critical for realizing a sustainable society. Previously reported desalination batteries need to work in alternate desalination/salination modes and also require external energy inputs during desalination. Here, we demonstrate a novel zinc–air battery-based desalination device (ZABD), which can desalinate brackish water and supply energy simultaneously. The ZABD consists of a zinc anode with a flowing ZnCl2 anolyte stream, a brackish water stream, and an air cathode with a flowing NaCl catholyte stream, separated by an anion-exchange membrane and a cation-exchange membrane, respectively. During the discharging, ions in brackish water move to the anolyte and catholyte, and they return to the feed steam during charging. The ZABD can desalt brackish water from 3000 ppm to the drinking water level at 120.1 ppm in one step and concurrently provide an energy output up to 80.1 kJ mol–1 under a discharge current density of 0.25 mA cm–2. Further, the ZABD can be charged/discharged over 20 cycles without significant performance deterioration, demonstrating its reversibility. Moreover, the desalination performances can be adjusted by varying current densities and are also influenced by the initial concentration of salt feeds. Besides, two ZABD devices were connected in series to drive 60 light-emitting diodes during the salt removal process without external power supply over 2000 min. Overall, this ZABD system demonstrates the potential for simultaneous water desalination and energy supply, which is suitable for many urgent situations.
A consumption-free electrochemical desalination method is demonstrated to work based on a light-driven photocathode with a Pt/CdS/CZTS/Mo architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.