Electrocatalytic C−N bond coupling to convert CO2 and N2 molecules into urea under ambient conditions is a promising alternative to harsh industrial processes. However, the adsorption and activation of inert gas molecules and then the driving of the C–N coupling reaction is energetically challenging. Herein, novel Mott–Schottky Bi‐BiVO4 heterostructures are described that realize a remarkable urea yield rate of 5.91 mmol h−1 g−1 and a Faradaic efficiency of 12.55 % at −0.4 V vs. RHE. Comprehensive analysis confirms the emerging space–charge region in the heterostructure interface not only facilitates the targeted adsorption and activation of CO2 and N2 molecules on the generated local nucleophilic and electrophilic regions, but also effectively suppresses CO poisoning and the formation of endothermic *NNH intermediates. This guarantees the desired exothermic coupling of *N=N* intermediates and generated CO to form the urea precursor, *NCON*.
Electrocatalytic C-N coupling reaction by co-activation of both N2 and CO2 molecules under ambient conditions to synthesis valuable urea opens a new avenue for sustainable development, while the actual catalytic...
Precisely fabricated frustrated Lewis pairs in the Ni3(BO3)2 nanocrystal achieve integration of the active sites and effective electrocatalytic C–N bond coupling to synthesize urea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.